首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of lesions of the median raphe or dorsal raphe nuclei on ovarian cycle were studied in rats. Lesions involving raphe nuclei decreased forebrain 5-HT and 5-hydroxyindole acid (5-HIAA) concentrations. Rats with lesions of the raphe showed prolonged estrous phase as well as an increase in both the eosinophilic index and karyopycnotic index of the vaginal smears. Histological examinations revealed that lesions of both the dorsal and median raphe produced marked increase in the number of maturing and mature follicles as well as an increase in corpora lutea. The increase in uterine weight was also observed. Present results indicate that lesions of the ascending 5-HT neurons stimulate ovulation and cause an increase in the estrogenic activity. Thus, the 5-HT neurons of the raphe nuclei seem to inhibit ovulation probably due to inhibiting of the hypothalamic releasing hormones.  相似文献   

2.
Abstract: Serotonergic neurons of the dorsal and median raphe nuclei are morphologically dissimilar. Recent results challenge previous evidence indicating a greater inhibition of dorsal raphe neurons after 5-hydroxytryptamine1A (5-HT1A) autoreceptor activation. As both nuclei innervate different forebrain territories, this issue is critical to understanding the changes in brain function induced by anxiolytic and antidepressant drugs. Using microdialysis, we examined the modifications of 5-HT release induced by the selective 5-HT1A agonist ipsapirone in both neuronal pathways. Maximal and minimal basal 5-HT values (in the presence of 1 µ M citalopram) were 45.0 ± 4.8 fmol/fraction in the median raphe nucleus and 8.4 ± 0.4 fmol/fraction in the dorsal hippocampus. Ipsapirone (0.3, 3, and 10 mg/kg s.c.) reduced dose-dependently 5-HT in the two raphe nuclei and four forebrain areas. Maximal reductions (to ∼25% of predrug values) were observed in cortex and striatum and in median raphe nucleus. The effects were more moderate in dorsal and ventral hippocampus (to 66 and 50% of baseline, respectively). These results are consistent with a higher sensitivity of dorsal raphe neurons to 5-HT1A autoreceptor activation. Yet the differential reduction of 5-HT release in the median raphe nucleus and hippocampus suggests the presence of complex mechanisms of control of 5-HT release in these neurons.  相似文献   

3.
Abstract: The characteristics of the serotonin (5-HT) output in the dorsal and median raphe nuclei of the rat were studied using in vivo microdialysis. The basal output of 5-HT increased after KC1 was added to the perfusion fluid. In contrast, neither the omission of calcium ions nor the addition of 0.5 nM tetrodotoxin affected dialysate 5-HT or 5-hy-droxyindoleacetic acid (5-H1AA). Reserpine did not decrease the output of 5-HT and 5-HIAA 24 h later and p-chloroamphetamine increased 5-HT in both vehicle- and reserpine-treated rats severalfold. 8-Hydroxy-2-(di-n-pro-pylamino)tetralin (8-OH-DPAT), at 1 or 10 μM, perfused into the raphe did not change the outputs of 5-HT or 5-HIAA. Higher doses (0.1, Land 10 mM) increased extracellular 5-HT in the raphe, probably via an inhibition of uptake. In animals bearing two probes (raphe nuclei and ventral hippocampus), only the 10 vaM dose of 8-OH-DPAT perfused into the raphe decreased the hippocampal output of 5-HT and 5-HIAA. The systemic injection of 0.1 mg/kg 8-OH-DPAT decreased dialysate 5-HT and 5-HIAA in the raphe and hippocampus. These results suggest that extracellular 5-HT in raphe nuclei originates from a cytoplasmic pool and is not dependent on either nerve impulse of 5-HT neurons or local activation of 5-HT1A receptors.  相似文献   

4.
The possible existence of tryptamine-containing neurons originating in the midbrain raphe is suggested by several reports of tryptamine-mediated responses to electrical stimulation of the raphe nuclei. To assess this hypothesis, we have investigated the effects of electrolytic lesions of the median and dorsal raphe nuclei on striatal, hypothalamic, and hippocampal concentrations of tryptamine, 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid. In addition, the rat striatal tryptophan concentrations were also determined. No changes in the concentrations of tryptamine were observed at 1 or 2 weeks after lesioning the dorsal and median raphe nuclei, at which time the other 5-hydroxyindoles were markedly reduced; furthermore, no reductions were observed in tryptamine concentrations in the striatum, hypothalamus, or hippocampus of rats pretreated with a monoamine oxidase inhibitor. The only change observed in these rats was a limited increase in striatal tryptamine and tryptophan observed at 1 day after lesioning. The results indicate that tryptamine concentration is independent of the integrity of 5-HT-containing neurons of the midbrain raphe nuclei. Furthermore, if tryptamine-containing neurons that have terminal projections to the striatum, hypothalamus, and hippocampus exist, their cell bodies are located in regions outside the dorsal and median raphe nuclei. Another possibility could be that tryptamine is located in glial cells.  相似文献   

5.
Abstract: After a single intraperitoneal injection of the irreversible tryptophan hydroxylase inhibitor p -chlorophenylalanine (PCPA; 300 mg/kg), there was a rapid down-regulation of serotonin (5-HT) transporter mRNA levels in cell bodies. This change was significant at 1 and 2 days after PCPA administration within the ventromedial but not the dorsomedial portion of the dorsal raphe nucleus. Seven days after PCPA treatment, 5-HT transporter mRNA levels were significantly elevated compared with controls in both regions of the dorsal raphe nucleus. PCPA administration produced no change in the [3H]-citalopram binding and synaptosomal [3H]5-HT uptake in terminal regions at 2 and 7 days after treatment but significantly reduced both these parameters by ∼20% in the hippocampus and in cerebral cortex 14 days after PCPA administration. The striatum showed a lower sensitivity to this effect. No significant changes were observed in the levels of [3H]citalopram binding to 5-HT cell bodies in the dorsal raphe nucleus. In the same animals used for 5-HT transporter mRNA level measurements, levels of tryptophan hydroxylase mRNA in neurons of the ventromedial and dorsomedial portions of the dorsal raphe nucleus were increased 2 days after PCPA administration and fell to control levels 7 days after injection in the ventromedial region but not in the dorsomedial portion of the dorsal raphe nucleus, where they remained significantly higher than controls. Altogether, these results show that changes in 5-HT transporter mRNA are not temporally related to changes in 5-HT transporter protein levels. In addition, our results suggest that the 5-HT transporter and tryptophan hydroxylase genes are regulated by different mechanisms. We also provide further evidence that dorsal raphe 5-HT neurons are differentially regulated by drugs, depending on their location.  相似文献   

6.
The release of 5-HT in terminal areas of the rodent brain is regulated by 5-HT1B receptors. Here we examined the role of 5-HT1B receptors in the control of 5-HT output and firing in the dorsal raphe nucleus (DR), median raphe nucleus (MnR) and forebrain of the rat in vivo. The local perfusion (30-300 microM) of the selective 5-HT1B receptor agonist CP-93,129 to freely moving rats decreased 5-HT release in the DR and more markedly in the MnR. Likewise, 300 microM CP-93,129 reduced 5-HT output in substantia nigra pars reticulata, ventral pallidum, lateral habenula and the suprachiasmatic nucleus. The effect of CP-93,129 was prevented by SB-224289, but not by WAY-100635, selective 5-HT1B and 5-HT1A receptor antagonists, respectively. SB-224289 did not alter dialysate 5-HT in any raphe nuclei. The intravenous administration of the brain-penetrant selective 5-HT1B receptor agonist CP-94,253 (0.5-2.0 mg/kg) to anesthetized rats decreased dialysate 5-HT in dorsal hippocampus and globus pallidus, increased it in MnR and left it unaltered in the DR and medial prefrontal cortex. SB-224289, at a dose known to block 5-HT1B autoreceptor-mediated effects (5 mg/kg), did not prevent the effect of CP-94,253 on MnR 5-HT. The intravenous administration of CP-94,253 (0.05-1.6 mg/kg) to anesthetized rats increased the firing rate of MnR, but not DR-5-HT neurons. The local perfusion of CP-94,253 in the MnR showed a biphasic effect, with 5-HT reductions at 0.3-3 microM and increase at 300 microM. These results suggest that 5-HT cell firing and release in midbrain raphe nuclei (particularly in the MnR) are under control of 5-HT1B receptors. The activation of 5-HT1B autoreceptors (possibly located on 5-HT nerve endings and/or varicosities within DR and MnR) reduces 5-HT release. The effects of higher concentrations of 5-HT1B receptor agonists seem more compatible with the activation of 5-HT1B heteroreceptors on inhibitory neurons.  相似文献   

7.
The agents p-chlorophenylalanine (PCPA) and p-chloroamphetamine (PCA) deplete brain serotonin (5-HT) levels by two different mechanisms; PCPA inhibits the enzyme tryptophan hydroxylase, whereas PCA has a neurotoxic action on certain 5-HT neurons. The parameters of [3H]paroxetine binding to homogenates prepared from the cerebral cortex of rats treated with PCPA, PCA, or saline; vehicle were investigated. The tissue concentrations of 5-HT and 5-hydroxyindole-3-acetic acid (5-HIAA) were also determined by HPLC in the same brain samples. After PCPA treatment, neither the maximum binding capacity (Bmax) nor the dissociation constant (KD) of [3H]paroxetine for the 5-HT uptake recognition site differed from controls despite a substantial reduction in the concentration of 5-HT and 5-HIAA. In contrast, significant changes in both the Bmax and KD values were observed in the cerebral cortex of rats treated with PCA. Furthermore, [3H]paroxetine binding and tissue concentrations of 5-HT and 5-HIAA were measured in the following different regions of the rat brain: cingulate, parietal, and visual cortical areas; dorsal and ventral hippocampus; rostral and caudal halves of neostriatum; ventral mesencephalic tegmentum; and midbrain raphe nuclei region after administration of PCPA, PCA, or saline vehicle. There was an excellent correlation between regional 5-HT levels and specific [3H]paroxetine binding in control and PCA-treated rats although this correlation was lost after PCPA treatment. Under these conditions, the 5-HT innervation remains unchanged whereas the concentration of 5-HT and 5-HIAA is greatly reduced. Thus, [3H]paroxetine binding appears to provide a reliable marker of 5-HT innervation density within the mammalian CNS.  相似文献   

8.
N J Penington  J S Kelly 《Neuron》1990,4(5):751-758
The release of serotonin (5-HT) from the terminals of serotonergic (raphe) neurons is under inhibitory feed-back control. 5-HT, acting on raphe cell body autoreceptors, also mediates inhibitory postsynaptic potentials as a result of release from collaterals from neighboring raphe neurons. This may involve a ligand (5-HT)-gated increase in the membrane potassium conductance, leading to a decrease in action potential frequency, which could indirectly reduce calcium influx into nerve terminals. In this report we demonstrate that 5-HT can also directly reduce calcium influx at potentials including and bracketing the peak of calcium current activation. Using acutely isolated, patch-clamped dorsal raphe neurons, we found that low concentrations of 5-HT and the 5-HT1A-selective agonist 8-OH-DPAT reversibly decrease whole-cell calcium current. This effect is antagonized by the putative 5-HT1A-selective antagonist NAN 190. Hence, the inhibition of calcium current may serve a physiological role in these cells and elsewhere in the brain.  相似文献   

9.
Chu YX  Liu J  Feng J  Wang Y  Zhang QJ  Li Q 《生理学报》2004,56(5):597-602
实验采用玻璃微电极细胞外记录法, 观察了帕金森病(Parkinson’s disease, PD)大鼠中缝背核(dorsal raphe nucleus, DRN)5- 羟色胺(5-hydroxytrypamine, 5-HT)能神经元电活动的变化。结果发现, 对照组和 PD 组大鼠 DRN 中 5-HT 能神经元的放电频率分别为(1.61 ±0.56) Hz 和(2.61 ±1.97) Hz, PD 组大鼠的放电频率显著高于对照组(P<0.05)。在对照组大鼠, 79% 的神经元呈现规则放电, 21% 为爆发式放电;在 PD 组大鼠,具有规则、不规则和爆发式放电的神经元比例分别为 36%、16% 和47%, 爆发式放电的 5-HT 能神经元比例明显高于对照组(P<0.05)。结果表明,帕金森病大鼠 DRN 中 5-HT 能神经元的放电频率增高, 且爆发式放电增多。  相似文献   

10.
The effect of injections of 5,6-dihydroxytryptamine, a potent and selective neurotoxic of serotonin neurons, into amygdala and dorsal raphe mesencephalic nucleus on the plasma renin activity has been studied in male Wistar rats. Plasma renin activity was estimated on 2nd, 4th, Tth and 14th day after injections in both areas. The administration of 5,6-dihydroxytryptamine in amigdala produced a significant decrease in plasmatic renin activity between 2nd and 4th day, but the inverse effect between 7th and 14th day. Similar effects were found after injections in dorsal raphe nucleus. The contents of cerebral 5-HT were simultaneously evaluated in the entire brain when the drug was implanted in dorsal raphe, and only in amygdaloid tissue when the injection was restricted to this area. A significant decrease in serotonin content was produced 7th day in both places, while partial recuperation was found toward 14th day. The results, especially the ones related to the chemical lesion of dorsal raphe nucleus, suggest that serotoninergic brain systems are involved, as stimulators, in the control of the dynamics of renin-angiotensin system.  相似文献   

11.
Serotonin (5-HT) contributes to the prenatal development of the central nervous system, acting as a morphogen in the young embryo and later as a neurotransmitter. This biologically active agent influences both morphological and biochemical differentiation of raphe neurons, which give rise to the descending serotonergic paths that regulate the processing of acutely evoked nociceptive inputs. The involvement of 5-HT in the prenatal development of tonic nociceptive system has not been studied. In the present study we evaluated the effects of a single injection (400 mg/kg, 2 ml, i.p.) of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA), given to pregnant rats during the critical period fetal serotonin development. The functional integrity of the tonic nociceptive response was investigated in 25 day old rats using the classic formalin test. Morphological analysis of brain structures involved in formalin-induced pain and 5-HT levels in the heads of 12-day embryos were also evaluated. Embryonic levels of 5-HT were significantly lowered by the treatment. The juvenile rats from pCPA-treated females showed altered brain morphology and cell differentiation in the developing cortex, hippocampus, raphe nuclei, and substantia nigra. In the formalin test, there were significant decreases in the intensity and duration of the second phase of the formalin-induced response, characterizing persistent, tonic pain. The extent of impairments in the brain structures correlated positively with the level of decrease in the behavioral responses. The data demonstrate the involvement of 5-HT in the prenatal development of the tonic nociceptive system. The decreased tonic component of the behavioral response can be explained by lower activity of the descending excitatory serotonergic system originating in the raphe nuclei, resulting in decreased tonic pain processing organized at the level of the dorsal horn of the spinal cord.  相似文献   

12.
The raphe-hippocampal serotonin (5-HT) system is involved in the regulation of the hypothalamus-pituitary-adrenal axis. The purpose of this study was to determine and compare the roles of 5-HT in the regulation of glucocorticoid receptor (GR) binding in the raphe nuclei and in the hippocampus. The effects of 5-HT, 5-HT agonists, and the 5-HT reuptake inhibitor citalopram on GR binding sites were studied in primary cultures of the fetal raphe nuclei and the hippocampus. Exposure of hippocampal cells to 5-HT, (+/-)-2,5-dimethoxy-4-iodoamphetamine (DOI; a 5-HT2 agonist), or citalopram resulted in an increase in number of GR binding sites. The effect of DOI was blocked by ketanserin (a 5-HT2 antagonist). Specific and saturable GR binding was found in raphe cells. Exposure of raphe cells to 5-HT, (+/-)-8 hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; a 5-HT1A agonist), or citalopram induced a significant decrease in number of GR binding sites. The effect of 8-OH-DPAT was reversed by WAY 100135 [N-tert-butyl-3-[1-[1-(2-methoxy)phenyl]piperazinyl]-1-phenylpropiona mide; a 5-HT1A antagonist]. These results show that the regulation of GRs during fetal life is structure-dependent and involves different 5-HT receptor subtypes. Moreover, the regulation of hippocampal GRs by citalopram suggests an action of antidepressants independent of their effects on monoamines.  相似文献   

13.
Diabetes and stress stimulate hippocampal 5-HT synthesis, metabolism and release. The present study was carried out to find the effects of insulin, Aegle marmelose alone and in combination with pyridoxine on the hippocampal 5-HT, 5-HT2A receptor subtype, gene expression studies on 5-HT2A, 5-HTT, INSR, immunohistochemical studies and elevated plus maze in streptozotocin induced diabetic rats. 5-HT content showed a significant decrease (p < 0.001) and a significant increase (p < 0.001) in 5-HIAA in hippocampus of diabetic rats compared to control. 5-HT receptor binding parameters Bmax and Kd showed a significant decrease (p < 0.001) whereas 5-HT2A receptor binding parameters Bmax showed a significant decrease (p < 0.001) with a significant increase (p < 0.05) in Kd in hippocampus of diabetic rats compared to control. Gene expression studies of 5-HT2A, 5-HTT and INSR in hippocampus showed a significant down regulation (p < 0.001) in diabetic rats compared to control. Pyridoxine treated in combination with insulin and A. marmelose to diabetic rats reversed the 5-HT content, Bmax , Kd of 5-HT, 5-HT2A and gene expression of 5-HT2A, 5-HTT and INSR in hippocampus to near control. The gene expression of 5-HT2A and 5-HTT were confirmed by immunohistochemical studies. Behavioural studies using elevated plus maze showed that serotonin through its transporter significantly increased (p < 0.001) anxiety-related traits in diabetic rats which were corrected by combination therapy. Our results suggest that pyridoxine treated in combination with insulin and A. marmelose has a role in the regulation of insulin synthesis and release, normalising diabetic related stress and anxiety through hippocampal serotonergic function. This has clinical significance in the management of diabetes.  相似文献   

14.
The effects of acute and chronic treatments with D-fenfluramine on the regional rates of serotonin (5-hydroxy-tryptamine; 5-HT) synthesis were investigated using the -[14C]methyl-L-tryptophan (-[14C]MTrp) autoradiographic method. In the first series of experiments, acute D-fenfluramine treatment (5 mg/kg; i.p.) given 20 min before the tracer injection significantly (p < 0.05) decreased 5-HT synthesis in the dorsal raphe, and significantly (p < 0.05) increased the rates in the cerebral cortices and caudate nucleus, when compared to the rates in the control rats (saline treated). In a second series of experiments, following a 7-day treatment with D-fenfluramine (5 mg/kg/day; i.p.), a significant (p < 0.05) decrease of 5-HT synthesis, in the dorsal raphe was observed, and significant (p < 0.05) increases were observed in the hypothalamus, the dorsal thalamus, the medial and lateral geniculate body and some brain stem regions (locus ceruleus, inferior and superior colliculus). No significant changes were observed in the cerebral cortices.  相似文献   

15.
Agonists at G-protein-coupled receptors in neurons of the dorsal raphe nucleus (DRN) of knock-out mice devoid of the serotonin transporter (5-HTT(-/-)) exhibit lower efficacy to inhibit cellular discharge than in wild-type counterparts. Using patch-clamp whole-cell recordings, we found that a G-protein-gated inwardly rectifying potassium (GIRK) current is involved in the inhibition of spike discharge induced by 5-HT1A agonists (5-carboxamidotryptamine (5-CT) and (+/-)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene hydrobromide (8-OH-DPAT); 50 nM-30 microM) in both wild-type and 5-HTT(-/-) female and male mice. These effects were mimicked by 5'-guanylyl-imido-diphosphate (Gpp(NH)p; 400 microM) dialysis into cells with differences between genders. The 5-HTT(-/-) knock-out mutation reduced the current density induced by Gpp(NH)p in females but not in males. These data suggest that the decreased response of 5-HT1A receptors to agonists in 5-HTT(-/-) mutants reflects notably alteration in the coupling between G-proteins and GIRK channels in females but not in males. Accordingly, gender differences in central 5-HT neurotransmission appear to depend-at least in part-on sex-related variations in corresponding receptor-G protein signaling mechanisms.  相似文献   

16.
Immunohistochemical techniques were employed to study the distribution of serotonin (5-HT) immunoreactive neurons in the brainstem of the hamster, guinea pig, rabbit and rat. 5-HT neurons were principally found to be concentrated in the midline raphe nuclei, particularly, the raphe pallidus, raphe obscurus, raphe magnus, raphe median, raphe pontis and raphe dorsalis nuclei. Characteristically, these cell bodies are displayed in bands or wing-like patterns which extend laterally from the raphe into reticular formations. The formations often appear to blend with the catecholamine system. They are particularly evident in the brainstems of the rabbit and hamster which contain wider and more lateral extensions of the serotonergic (5-HT) neurons than those observed in the brainstems of the rat and guinea pig. The widespread distribution of 5-HT immunoreacted cell bodies in the brainstem shows that there are significant prospects of 5-HT in neuronal activities.  相似文献   

17.
18.
The median raphe nucleus and dorsal raphe nucleus together are the major source of ascending 5-HT projections. Here, using in vitro extracellular single unit electrophysiology we examined the responses of individual neurones in the rat median raphe nucleus and dorsal raphe nucleus to alpha(1)-adrenoceptor and 5-HT(1A) receptor activation and made comparisons between the two nuclei. In the presence of the alpha(1)-adrenoceptor agonist phenylephrine (1microM) all spontaneously active neurones recorded in the median and dorsal raphe nuclei fired slowly (<5Hz) and regularly. Most were inhibited by 5-HT (10-50microM), although a few were excited by 5-HT. 5-HT-induced inhibition was attenuated by the 5-HT(1A) receptor antagonist, WAY100635 (100nM). Compared to those in the dorsal raphe nucleus, the neurones in the median raphe nucleus which were inhibited by 5-HT had: (1) lower basal firing rates in the continuous presence of phenylephrine (1microM), (2) smaller excitatory responses to higher concentrations of phenylephrine (3-10microM), (3) smaller excitatory responses to brief application of norepinephrine (10-100microM) and (4) smaller inhibitory responses to 5-HT (10-50microM). The lower sensitivity of median raphe neurones to alpha(1)-adrenoceptor excitation and 5-HT(1A) receptor inhibition will have consequences for 5-HT neurotransmission in forebrain regions innervated by the two nuclei.  相似文献   

19.
The effects of acute and repeat administration of the serotonin (5-HT)(1) agonists TFMPP [N -(3-trifluoromethyl)phenylpiperazine hydrochloride] and CGS12066B [7-trifluoromethyl-4- (4-methyl-1-piperazinyl)pyrrolo[1,2-a ]-quinoxaline dimaleate] were evaluated on 5-HT synthesis rates using the alpha-[(14) C]methyl-l-tryptophan (alpha-MTrp) autoradiographic method. In the acute treatment study, TFMPP (10 mg/kg) and CGS12066B (5 mg/kg) were injected intraperitoneally 30 min before an alpha-MTrp injection. In an acute study TFMPP reduced overall brain 5-HT synthesis, in the dorsal and median raphe, and in almost all of their projection areas, with the exception of the parietal, sensory-motor, and frontal cortices, the accumbens nucleus, and the caudate. Acute CGS12066B treatment did not have overall significant effect, but the rates did decrease in the cell body areas of 5-HT neurons. In a 7-day treatment with TFMPP (10 mg/kg/day) or CGS12066B (5 mg/kg/day), the 5-HT synthesis rates (24 h after last dose) decrease, with both compounds, in almost all of the nerve terminal structures. TFMPP reduced the synthesis in the dorsal and median raphe, while CGS12066B reduced it only in the dorsal raphe. This data suggests that after a 7-day treatment with TFMPP and CGS12066B, the rate of 5-HT synthesis in the dorsal raphe is restored and is reduced in many projection areas. The observed effects in the 7-day treatment could also be related to actions through the postsynaptic 5-HT(1B) sites and/or other 5-HT receptors since this compounds have limited selectivity.  相似文献   

20.
 Monoclonal antibodies were generated against serotonin (5-HT) and the C-terminal portion of the neuronal form of nitric oxide synthase (nNOS), the enzyme producing nitric oxide in neurons. These antibodies were used to compare the distribution of 5-HT- and nNOS-containing neurons in the raphe nuclei of four animal species (rat, mouse, guinea pig, and cat). It was found that the rat was the only species in which the raphe nuclei contain a substantial number of nNOS-immunoreactive (IR) cell bodies. In this species and as observed by other authors, all mesencephalic raphe nuclei contained nNOS-IR cells, the largest group being located in the nucleus raphe dorsalis. The coexistence of nNOS and 5-HT immunoreactivities in these nuclei was visualized by double labeling. In the medulla, the nuclei raphe magnus and obscurus displayed a rather low number of nNOS-IR neurons. In the other species, nNOS-IR cell bodies were found in very low numbers, whatever raphe nucleus was considered. The rostral pole of the nucleus raphe dorsalis and the nuclei raphe magnus and obscurus contained a few nNOS-IR neurons which did not show any coincidence with the 5-HT neurons. In addition, nNOS-IR axons were rare. It is concluded that in the mouse, guinea pig, and cat the involvement of nitric oxide in functions subserved by 5-HT within the raphe nuclei might be minimal. Accepted: 5 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号