首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli toxin exporter HlyB comprises an integral membrane domain fused to a cytoplasmic domain of the ATP-binding casette (ABC) super-family, and it directs translocation of the 110kDa haemolysin protein out of the bacterial cell without using an N-terminal secretion signal peptide. We have exploited the ability to purify the soluble HlyB ABC domain as a fusion with glutathione S-transferase to obtain a direct correlation of the in vivo export of protein by HlyB with the degree of ATP binding and hydrolysis measured in vitro. Mutations in residues that are invariant or highly conserved in the ATP-binding fold and glycine-rich linker peptide of prokaryotic and eukaryotic ABC transporters caused a complete less of both HlyB exporter function and ATPase activity in proteins still able to bind ATP effectively and undergo ATP-induced conformational change. Mutation of less-conserved residues caused reduced export and ATP hydrolysis, but not ATP binding, whereas substitutions of poorly conserved residues did not impair activity either in vivo or in vitro. The data show that protein export by HlyB has an absolute requirement for the hydrolysis of ATP bound by its cytoplasmic domain and indicate that comparable mutations that disable other prokaryotic and eukaryotic ABC transporters also cause a specific loss of enzymatic activity.  相似文献   

2.
Actin, together with associated proteins, such as myosin, cross-linking or capping proteins, has been observed in all eukaryotic cells. Presence of actin or actin-like proteins has also been reported in prokaryotic organisms belonging to the cyanobacteria. Our aim was first to extend the characterization of an actin-like protein to another prokaryotic cell, i.e. Spirulina, then to compare the antigenic reactivity of this new protein with that of Synechocystis and skeletal actins. We observed that some of the conserved antigenic epitopes corresponded to actin regions known to interact with cross-linking proteins. We also report for the first time that α-actinin and filamin purified from chicken gizzard both interact with a prokaryotic actin-like protein. Finally, we searched for the occurrence of a cross-linking protein in these cyanobacteria and identified a 105-kDa protein as an α-actinin-like protein using specific antibodies.  相似文献   

3.
Escherichia coli is the most widely used host for producing membrane proteins. Thus far, to study the consequences of membrane protein overexpression in E. coli, we have focussed on prokaryotic membrane proteins as overexpression targets. Their overexpression results in the saturation of the Sec translocon, which is a protein-conducting channel in the cytoplasmic membrane that mediates both protein translocation and insertion. Saturation of the Sec translocon leads to (i) protein misfolding/aggregation in the cytoplasm, (ii) impaired respiration, and (iii) activation of the Arc response, which leads to inefficient ATP production and the formation of acetate. The overexpression yields of eukaryotic membrane proteins in E. coli are usually much lower than those of prokaryotic ones. This may be due to differences between the consequences of the overexpression of prokaryotic and eukaryotic membrane proteins in E. coli. Therefore, we have now also studied in detail how the overexpression of a eukaryotic membrane protein, the human KDEL receptor, affects E. coli. Surprisingly, the consequences of the overexpression of a prokaryotic and a eukaryotic membrane protein are very similar. Strain engineering and likely also protein engineering can be used to remedy the saturation of the Sec translocon upon overexpression of both prokaryotic and eukaryotic membrane proteins in E. coli.  相似文献   

4.
ATP synthase is an enzyme involved in oxidative phosphorylation from prokaryotic to eukaryotic cells. In mammals it comprises at least 16 subunits from which the mitochondrial encoded ATP6 and ATP8 are essential. Mitochondrial genes variations have been suggested to allow rapid human and animal adaptation to new climates and dietary conditions (Mishmar et al. 2003). Camelidae taxa are uniquely adapted to extremely hot and dry climates of African-Asian territories and to cold and hypoxic environments of the South American Andean region. We sequenced and analyzed ATP6 and ATP8 genes in all camelid species. Based on the available structural data and evolutionary conservation of the deduced proteins we identified features proper of the group. In Old World camels the ATP8, important in the assembly of the F0 complex, showed a number of positively charged residues higher than in the other aligned species. In ATP6 we found the camelid specific substitutions Q47H and I106V that occur in sites highly conserved in other species. We speculate that these changes may have functional importance.  相似文献   

5.
Elicitation of drug resistance and various survival strategies inside host macrophages have been the hallmarks of Mycobacterium tuberculosis as a successful pathogen. ATP Binding Cassette (ABC) transporter type proteins are known to be involved in the efflux of drugs in bacterial and mammalian systems. FtsE, an ABC transporter type protein, in association with the integral membrane protein FtsX, is involved in the assembly of potassium ion transport proteins and probably of cell division proteins as well, both of which being relevant to tubercle bacillus. In this study, we cloned ftsE gene of M. tuberculosis, overexpressed and purified. The recombinant MtFtsE-6xHis protein and the native MtFtsE protein were found localized on the membrane of E. coli and M. tuberculosis cells, respectively. MtFtsE-6xHis protein showed ATP binding in vitro, for which the K42 residue in the Walker A motif was found essential. While MtFtsE-6xHis protein could partially complement growth defect of E. coli ftsE temperature-sensitive strain MFT1181, co-expression of MtFtsE and MtFtsX efficiently complemented the growth defect, indicating that the MtFtsE and MtFtsX proteins might be performing an associated function. MtFtsE and MtFtsX-6xHis proteins were found to exist as a complex on the membrane of E. coli cells co-expressing the two proteins.  相似文献   

6.
We report the solution nuclear magnetic resonance (NMR) structure of CHU_1110 from Cytophaga hutchinsonii. CHU_1110 contains three α-helices and one antiparallel β-sheet, forming a large cavity in the center of the protein, which are consistent with the structural characteristics of AHSA1 protein family. This protein shows high structural similarities to the prokaryotic proteins RHE_CH02687 from Rhizobium etli and YndB from Bacillus subtilis, which can bind with flavinoids. Unlike these two homologs, CHU_1110 shows no obvious interaction with flavonoids in NMR titration experiments. In addition, no direct interaction has been observed between CHU_1110 and ATP, although many homologous sequences of CHU_1110 have been annotated as ATPase. Combining the analysis of structural similarity of CHU_1110 and genomic context of its encoding gene, we speculate that CHU_1110 may be involved in the stress response of bacteria to heavy metal ions, even though its specific biological functions that need to be further investigated.  相似文献   

7.
Membrane proteins constitute ~30% of prokaryotic and eukaryotic genomes but comprise a small fraction of the entries in protein structural databases. A number of features of membrane proteins render them challenging targets for the structural biologist, among which the most important is the difficulty in obtaining sufficient quantities of purified protein. We are exploring procedures to express and purify large numbers of prokaryotic membrane proteins. A set of 280 membrane proteins from Escherichia coli and Thermotoga maritima, a thermophile, was cloned and tested for expression in Escherichia coli. Under a set of standard conditions, expression could be detected in the membrane fraction for approximately 30% of the cloned targets. About 22 of the highest expressing membrane proteins were purified, typically in just two chromatographic steps. There was a clear correlation between the number of predicted transmembrane domains in a given target and its propensity to express and purify. Accordingly, the vast majority of successfully expressed and purified proteins had six or fewer transmembrane domains. We did not observe any clear advantage to the use of thermophilic targets. Two of the purified membrane proteins formed crystals. By comparison with protein production efforts for soluble proteins, where ∼70% of cloned targets express and ∼25% can be readily purified for structural studies [Christendat et al. (2000) Nat. Struct. Biol., 7, 903], our results demonstrate that a similar approach will succeed for membrane proteins, albeit with an expected higher attrition rate.  相似文献   

8.
The cold-shock response — a hot topic   总被引:4,自引:2,他引:2  
  相似文献   

9.
SecA is the precursor protein binding subunit of the bacterial precursor protein translocase, which consists of the SecY/E protein as integral membrane domain. SecA is an ATPase, and couples the hydrolysis of ATP to the release of bound precursor proteins to allow their proton-motive-force-driven translocation across the cytoplasmic membrane. A putative ATP-binding motif can be predicted from the amino acid sequence of SecA with homology to the consensus Walker A-type motif. The role of this domain is not known. A lysine residue at position 106 at the end of the glycine-rich loop in the A motif of the Bacillus subtilis SecA was replaced by an asparagine through site-directed mutagenesis (K106N SecA). A similar replacement was introduced at an adjacent lysine residue at position 101 (K101N SecA). Wild-type and mutant SecA proteins were expressed to a high level and purified to homogeneity. The catalytic efficacy (kcat/km) of the K106N SecA for lipid-stimulated ATP hydrolysis was only 1% of that of the wild-type and K101N SecA. K106N SecA retained the ability to bind ATP, but its ATPase activity was not stimulated by precursor proteins. Mutant and wild-type SecA bind with similar affinity to Escherichia coli inner membrane vesicles and insert into a phospholipid mono-layer, in contrast to the wild type, membrane insertion of the K106N SecA was not prevented by ATP. K106N SecA blocks the ATP and proton-motive-force-dependent chase of a translocation intermediate to fully translocated proOmpA. It is concluded that the GKT motif in the amino-terminal domain of SecA is part of the catalytic ATP-binding site. This site may be involved in the ATP-driven protein recycling function of SecA which allows the release of SecA from its association with precursor proteins, and the phospholipid bilayer.  相似文献   

10.
11.
The eyespot apparatus (EA) of Chlamydomonas reinhardtii P. A. Dang. consists of two layers of carotenoid‐rich lipid globules subtended by thylakoids. The outermost globule layer is additionally associated with the chloroplast envelope membranes and the plasma membrane. In a recent proteomic approach, we identified 202 proteins from isolated EAs of C. reinhardtii via at least two peptides, including, for example, structural components, signalling‐related proteins, and photosynthetic‐related membrane proteins. Here, we have analyzed the proteins of the EA with regard to their topological distribution using thermolysin to find out whether the arrangement of globules and membranes provides protection mechanisms for some of them. From about 230 protein spots separated on two‐dimensional gels, the majority were degraded by thermolysin. Five major protein spots were protected against the action of this protease. These proteins and some that were degradable were identified by mass spectrometry. Surprisingly, the thermolysin‐resistant proteins represented the α and β subunits of the soluble CF1 complex of the chloroplast ATP synthase. Degradable proteins included typical membrane proteins like LHCs, demonstrating that thermolysin is not in general sterically prevented by the EA structure from reaching membrane‐associated proteins. A control experiment showed that the CF1 complex of thylakoids is efficiently degraded by thermolysin. Blue native PAGE of thermolysin‐treated EAs followed by SDS‐PAGE revealed that the α and β subunits are present in conjunction with the γ subunit in a thermolysin‐resistant complex. These results provide strong evidence that a significant proportion of these ATP‐synthase subunits have a specialized localization and function within the EA of C. reinhardtii.  相似文献   

12.
Kun  Wang  Feng  Gao  Renshan  Zhu  Shaoqing  Li  Yingguo  Zhu 《Plant Molecular Biology Reporter》2011,29(3):739-744
Pentatricopeptide repeat protein (PPR) proteins are putative RNA-binding proteins which are particularly prevalent in terrestrial plants. Previous research has reported the great difficulty in purifying soluble PPR proteins in Escherichia coli, therefore hindering further study of their functions. In this paper, we report the use of the pMAL prokaryotic expression system to acquire a soluble expression of a PPR protein, RF1A from rice (Oryza sativa L.). After purification, we identified RF1A by ESI-TOF-MS/MS. We also made an estimation of its secondary structure using the circular dichroism spectroscopy. These results supported the bioinformatic prediction of helical-hairpin model about PPR proteins.  相似文献   

13.
A simple negative staining procedure has been developed for the demonstration of actin filaments and myosin aggregates in single giant amoeba (Chaos carolinensis) that is applicable to other single cells. Cytoplasm is first isolated in physiological solutions in which contractility and state of association of contractile proteins can be controlled. Cytoplasm isolated in low calcium, low ATP concentration solutions contains actin associated with myosin aggregates sometimes forming light-microscopically visible fibrils. When exogenous ATP is added to these preparations, actin filaments and myosin aggregates are seen separately.  相似文献   

14.
Summary Numerous Escherichia coli mutants have been used to determine the genetics and sequence of assembly of the prokaryotic proton-translocating ATP synthase complex. Similar studies with the analogous chloroplast ATP synthase in higher plants have not been possible due to lack of suitable mutants. We describe here a preliminary characterization of cfr, a nuclear mutation in Zea mays L. that appears to destabilize or prevent assembly of the chloroplast ATP synthase complex. Biochemical and physiological analyses indicate that the amounts of both the CF1 and CFo components of the complex are severely diminished. Mutant seedlings are pale green and occasionally survive, with greatly reduced vigor, to maturity. The cfr locus has been mapped genetically to the short arm of chromosome. 1.  相似文献   

15.
A region of approximately 22 kb of DNA defines the large hrp gene cluster of strain GMI1000 of Pseudomonas solanacearum. The majority of mutants that map to this region have lost the ability to induce disease symptoms on tomato plants and are no longer able to elicit a hypersensitive reaction (HR) on tobacco, a nonhost plant. In this study we present the complementation analysis and nucleotide sequence of a 4772 by region of this hrp gene cluster. Three complete open reading frames (ORFs) are predicted within this region. The corresponding putative proteins, HrpN, HrpO and HpaP, have predicted sizes of 357, 690 and 197 amino acids, respectively, and predicted molecular weights of 38607, 73 990 and 21959 dalton, respectively. HrpN and HrpO are both predicted to be hydrophobic proteins with potential membrane-spanning domains and HpaP is rich in proline residues. A mutation in hpaP (for hrp associated) does not affect the HR on tobacco or the disease on tomato plants. None of the proteins is predicted to have an N-terminal signal sequence, which would have indicated that the proteins are exported. Considerable sequence similarities were found between HrpO and eight known or predicted prokaryotic proteins: LcrD of Yersinia pestis and Y. enterocolitica, FlbF of Caulobacter crescentus, F1hA of Bacillus subtilis, MxiA and VirH of Shigella flexneri, InvA of Salmonella typhimurium and HrpC2 of Xanthomonas campestris pv. vesicatoria. These homologies suggest that certain hrp genes of phytopathogenic bacteria code for components of a secretory system, which is related to the systems for secretion of flagellar proteins, Ipa proteins of Shigella flexneri and the Yersinia Yop proteins. Furthermore, these homologous proteins have the common feature of being implicated in a distinct secretory mechanism, which does not require the cleavage of a signal peptide. The sequence similarity between HrpO and HrpC2 is particularly high (66% identity and 81 % similarity) and the amino acid sequence comparison between these two proteins presented here reveals the first such sequence similarity to be shown between Hrp proteins of P. solanacearum and X. campestris. An efflux of plant electrolytes was found to be associated with the interactions between P. solanacearum and both tomato and tobacco leaves. This phenomenon may be part of the mechanism by which hrp gene products control and determine plant-bacterial interactions, since hrpO mutants induced levels of leakage which were significantly lower than those induced by the wild type on each plant.  相似文献   

16.
Based on selective labeling by ATP analogues, Lys68 of the Calvin Cycle enzyme phosphoribulokinase (PRK) from spinach has been assigned to the active-site region [Miziorkoet al. (1990),J. Biol. Chem. 265, 3642–3647]. The equivalent position is occupied by lysyl or arginyl residues in the PRK from both prokaryotic and eukaryotic sources, suggesting a requirement for a basic residue at this location. To examine this possibility, we have replaced Lys68 of the spinach enzyme with arginyl, glutaminyl, alanyl, or glutamyl residues by site-directed mutagenesis. All of the mutant enzymes retain substantial kinase activity; and even in the case of the radical substitution by glutamate, theK m values for ATP and ribulose 5-phosphate are not perturbed significantly. Glutamate at position-68 may destabilize tertiary structure, because the yield of this mutant protein from transformedE. coli is quite low compared to that of the other proteins in this series. Despite the active-site proximity of Lys68, our results show that this residue does not play a key role in catalysis or substrate binding.  相似文献   

17.
NfeD-like proteins are widely distributed throughout prokaryotes and are frequently associated with genes encoding stomatin-like proteins (slipins). Here, we reveal that the NfeD family is ancient and comprises three major groups: NfeD1a, NfeD1b and truncated NfeD1b. Members of each group are associated with one of four conserved gene partners, three of which have eukaryotic homologues that are membrane raft associated, namely stomatin, paraslipin (previously SLP-2) and flotillin. The first NfeD group (NfeD1b), comprises proteins of approximately 460-aa long that have three functional domains: an N-terminal protease, a middle membrane-spanning region and a soluble C-terminal region rich in β-strands. The nfeD1b gene is adjacent to eoslipin in prokaryotic genomes except in Firmicutes and Deinococci, where yqfA replaces eoslipin. Proteins in the second major group (NfeD1a) are homologous to the C-terminus of NfeD1b which forms a β-barrel-like domain, and their genes are associated with paraslipin. Using OrthoMCL clustering, we show that nfeD1b genes have become truncated on many independent occasions giving rise to the third major group. These short NfeD homologues frequently remain associated with their ancestral gene neighbour, resembling NfeD1a in structure, yet are much more related to full-length NfeD1b; we term these “truncated NfeD1b”. These conserved associations suggest that NfeD proteins are dependent on gene partners for their function and that the site of interaction may lie within the C-terminal portion that is common to all NfeD homologues. Although NfeD homologues are confined to prokaryotes, this conserved association could represent an excellent system to study slipin and flotillin proteins.  相似文献   

18.
A conserved amino acid sequence motif was identified in four distinct groups of enzymes that catalyze the hydrolysis of the α–β phosphate bond of ATP, namely GMP synthetases, argininosuccinate synthetases, asparagine synthetases, and ATP sulfurylases. The motif is also present in Rhodobacter capsulata AdgA, Escherichia coli NtrL, and Bacillus subtilis OutB, for which no enzymatic activities are currently known. The observed pattern of amino acid residue conservation and predicted secondary structures suggest that this motif may be a modified version of the P-loop of nucleotide binding domains, and that it is likely to be involved in phosphate binding. We call it PP-motif, since it appears to be a part of a previously uncharacterized ATP pyrophophatase domain. ATP sulfurylases, NtrL, and OutB consist of this domain alone. In other proteins, the pyrophosphatase domain is associated with amidotransferase domains (type I or type II), a putative citrulline-aspartate ligase domain or a nitrilase/amidase domain. Unexpectedly, statistically significant overall sequence similarity was found between ATP sulfurylase and 3′-phosphoadenosine 5′-phosphosulfate (PAPS) reductase, another protein of the sulfate activation pathway. The PP-motif is strongly modified in PAPS reductases, but they share with ATP sulfurylases another conserved motif which might be involved in sulfate binding. We propose that PAPS reductases may have evolved from ATP sulfurylases; the evolution of the new enzymatic function appears to be accompanied by a switch of the strongest functional constraint from the PP-motif to the putative sulfate-binding motif. © 1994 Wiley-Liss, Inc.  相似文献   

19.
【目的】获得幽门螺杆菌(Helicobacter pylori,HP) GroEL结合蛋白质组构成谱,为进一步探究GroEL及其与相互作用蛋白在HP致病机制中的作用提供新思路。【方法】在构建HP GroEL原核表达重组大肠杆菌(Escherichia coli) BL21(DE3)(pET-28a(+)-groEL)基础上,纯化带有His标签的GroEL蛋白,与HP全菌蛋白提取液共孵育后,利用Protein G磁珠和抗His标签抗体免疫沉淀法对复合物进行捕获,然后对复合物中GroEL及其结合的蛋白质进行质谱法鉴定,根据主要功能对其进行分类,并完成蛋白质相互关系网络分析。【结果】对GroEL蛋白捕获成分进行分析,共鉴定出59种可能与GroEL结合的蛋白质,其中包括19种代谢酶类(KatA、GltA和AhpC等参与氧化还原相关酶类7种,PepA、RocF和HtrA等肽酶5种,以及2种参与脂肪代谢酶、2种参与ATP合成酶、2种尿素酶和HP17_08079蛋白等)、15种外膜蛋白(黏附素BabA、SabA、HapA及其他膜蛋白等)、8种转录翻译相关蛋白(Tuf、RpoBC...  相似文献   

20.
A number of hydrophobic proteins have been separated and purified to varying degrees from synaptic membranes derived from bovine brain. The proteins, which have been obtained using preparative acrylamide gel electrophoresis, have been analyzed for molecular weight, amino acid composition, peptide mapping, N-terminal amino acids, and for their ability to bind calcium and ATP. A number of the proteins bound calcium, the greatest binding being associated with a component having a molecular weight of 1.5 · 104, a binding capacity of 4 calcium/molecule, and a Km of 1.5 · 10?5 M. An acidic tryptic peptide derived from this protein was evidently responsible for the calcium-binding. ATP binding appeared to be confined largely to the higher molecular weight proteins. From the peptide mapping there appears to be a similar acidic component in a number of the proteins exhibiting calcium-binding. ATP-binding was associated mainly with the high molecular weight proteins, particularly those which consisted of numerous basic tryptic peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号