首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To measure quantitatively the intracellular distribution of cellular glutathione peroxidase (GPX) in rat hepatocytes, ultrathin sections were stained by a postembedding immunogold technique. GPX had a specific activity of 1670 Units/mg protein, and was purified 2050-fold from rat liver by means of heat denaturation, ammonium sulfate fractionation, and a series of chromatographic procedures including thiol-Sepharose 4B. The purified GPX was shown to be electrophoretically pure, and was a homotetramer of 22 kDa subunits. Monospecific polyclonal antibodies were raised in rabbits by immunization. By immunoblot analysis, both the light mitochondrial the and cytosolic fractions of rat liver homogenate gave a single band with an identical mobility to that of the purified enzyme. Under the light microscope, hepatocytes showed nuclear staining and granular cytoplasmic staining, corresponding to certain intracellular structures. The labeling density (number of gold particles/m2) for GPX obtained by immunoelectron microscopy was 11.9 in the nuclei, 19.6 in mitochondria, 3.32 in peroxisomes, 1.95 in lysosomes, and 9.81 in the cytoplasmic matrix. These results suggest that cellular GPX is present in various compartments of rat hepatocytes, and that the GPX occurs in relatively higher amounts in mitochondria.  相似文献   

2.
To determine the distribution of cellular glutathione peroxidase in rat lungs, the tissues were stained immunohistochemically. Quantitative analysis was performed in certain cell types of alveolar linings, after the ultrathin sections were stained by a postembedding immunogold technique. Immunoblot analysis revealed that homogenates of rat liver, heart, and lungs all gave a single band. Under the light microscope, the following tissues were stained intensely: epithelial cells, smooth muscle cells and glands of bronchi and bronchioles, type II alveolar cells, and alveolar macrophages. Under immunoelectron microscopy, type II alveolar cells and macrophages were abundant in mitochondria. The mitochondria, nucleus, and cytoplasm of macrophages were labeled almost twice as densely as the respective compartments of type II alveolar cells. Within cell types, the mitochondria were labeled twice as densely as the nuclei. The other particles were less than half as densely labeled as the nuclei. The labeling was slightly less dense in the cytoplasm than in the nucleus. The present study revealed that glutathione peroxidase occurred predominantly in the epithelial linings and metabolically active sites in rat lungs. The tissues that were previously found to be rich in superoxide dismutases were also rich in glutathione peroxidase.  相似文献   

3.
We investigated the developmental profile of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD) in tissue sections obtained from fetal (Day 12 to 21 of gestation) and neonatal (Day 0 and 6) rats. Tissues were stained immunohistochemically with specific antisera against the respective rat SODs. There was a general trend towards richness of SODs in the epithelial linings and metabolically active sites, although differential distribution between the two SODs also existed. At Day 12 of gestation, immunoreactivity for both SODs was detected in the cardiomyocytes but not in other tissues. Hepatocytes expressed CuZnSOD at Day 14 and MnSOD at Day 17. By Day 18 CuZnSOD was detected in the epithelial cells of the gastrointestinal tract, respiratory tract, pancreatic islets, kidneys, and adrenals. These tissues exhibited MnSOD staining at Day 19. CuZnSOD occurred in the epithelia of the thyroid, thymus, and salivary glands at Day 19, while MnSOD was seen at Day 21. The increase in intensity of the staining for SODs occurred no later than postnatal Day 0, indicating that most tissues accumulated SODs during late gestation. Breathing atmospheric oxygen during early extrauterine life did not appreciably intensify the SOD staining. These results suggest that perinatal increase in SODs occurs as a general mechanism of preparation for birth.  相似文献   

4.
Immunohistochemical localization of ornithine aminotransferase (L-ornithine: 2-oxo-acid aminotransferase, EC 2.6.1.13), a mitochondrial enzyme whose hereditary absence induces gyrate atrophy of the choroid and retina, was elucidated by a direct immunoperoxidase method using Fab'-horseradish peroxidase conjugates. In immunodiffusion studies, the antibodies raised with the re-crystallized enzyme were highly specific to ornithine aminotransferase. To show localization of ornithine aminotransferase in normal rat tissues, clear immunohistochemical staining of this enzyme through the inner mitochondrial membrane in paraffin sections was achieved with Fab'-horseradish peroxidase conjugates. Strong immunoreactivity was present in cerebral neurons, hepatocytes, and epithelial cells of renal tubuli, gut mucous membranes, and ocular tissues. Specific distribution of ornithine aminotransferase was found in ependymal cell groups: namely, epithelial cells of the choroid plexus, pigmented and nonpigmented epithelial cells of the ciliary body. and Müller cells and pigment epithelium of the retina.  相似文献   

5.
6.
7.
Metallothionein (MT) is a cysteine-rich, low molecular weight protein inducible by heavy metal ions and various endogenous factors. Using an indirect immunofluorescent technique, we studied the localization of MT in developing rat tissues (kidney, small intestine, and liver). In kidney of the neonate and fetus, MT was found in both the cytoplasm and the nucleus of renal tubular epithelia. Localization of MT changed with shift of zonation in the renal cortex during development. Metallothionein was found mainly in the inner zone of the cortex but not in tubules of the neogenic zone on Day 4. Until Day 18, tubular cells containing MT were observed in a part of the cortex adjacent to the medulla, followed by a significant decrease in immunostaining by Day 27. In small intestine of the neonate, MT was localized predominantly in Paneth and goblet cells which play secretory roles. The number of goblet cells with strong immunostaining for MT was maximal on Day 27. In liver of 20-day fetuses and of 4-day-old neonates, both the cytoplasm and the nucleus of hepatocytes exhibited strong immunofluorescence. The intensity of MT staining diminished with development, and by 18-27 days after birth no immunofluorescence was observed in the nucleus. We further studied a possible association of MT with development by localizing MT in livers obtained from partially hepatectomized and laparotomized rats. Hepatectomy led to the appearance of MT not only in the nucleus and cytoplasm of hepatocytes but also in sinusoids and bile canaliculi. After laparotomy, MT immunofluorescence was observed only in the cytoplasm. The present results suggest a possible involvement of MT in cell proliferation and differentiation, as well as in transport and secretion of this metal-binding protein.  相似文献   

8.
Glutathione peroxidase was purified from the rat liver to give a single protein band in polyacrylamide gel electrophoresis. Rabbits were immunized with this purified enzyme, and a highly specific anti-glutathione peroxidase antiserum was obtained. Using this antibody, an immunohistochemical technique (the indirect method of peroxidase-labeled antibody) was applied to study the localization of the enzyme in the liver cells.On immunohistochemical observation, glutathione peroxidase was localized exclusively in the cytoplasm of hepatocytes, and a stronger ‘immuno-staining’ was exhibited in the peripheries of the hepatic lobules than in the central zone.  相似文献   

9.
Immunohistochemical localization of follistatin in rat tissues.   总被引:6,自引:0,他引:6  
We have used immunohistochemistry to localize follistatin/activin-binding protein in adult male and female rats. A polyclonal antibody directed against a follistatin peptide (residues 123-134) was used as a specific immunologic probe. Intense and specific follistatin immunoreactivity was evident in spermatogenic cells of seminiferous tubules in the testis. The predominant staining was in nuclei of spermatocytes and spermatids, but no immune reaction was observed in spermatogonia or spermatozoa. Moderate immunoreactivity was detected in Leydig cells. Sertoli cells were follistatin-negative. Significant immunoreactivity was evident in ovarian granulosa cells. The intensity of the staining changed with follicle development: no immunoreactivity was observed in granulosa cells of primordial to primary follicles, but the cells of secondary to Graafian follicles displayed moderate to strong staining and finally luteal cells of the corpus luteum became negative. The epithelial lining of the oviduct and the smooth muscle of the myometrium of the uterus were intensely immunoreactive. Immunoreactive follistatin staining was present in the pituitary: a group of round-shaped cells were specifically stained. Immunostainable follistatin was visible in the epithelial layers of renal tubules with moderate to strong staining reactivity. Hepatic cells in the liver demonstrated homogeneous immunoreactivity from moderate to strong. The cortex of the adrenal gland, white pulp of the spleen and the brain cortex were also stained weakly but distinctly with the antiserum. In conclusion, immunoreactive follistatin is widespread in rat tissues, suggesting that follistatin/activin-binding protein is a ubiquitous protein, regulating a wide variety of activin actions.  相似文献   

10.
11.
Glutathione peroxidase (GSH-PO), a highly soluble, selenium-dependent enzyme metabolizing lipid peroxides, is allegedly distributed in both the cytosol and mitochondria. With the pre-embedding method of immunoelectron microscopy for GSH-PO employing conventional immersion-fixation, the nuclei of rat hepatocytes stain positively, whereas mitochondria are negative. Such observations are inconsistent with the results of biochemical and immunoblot analyses using isolated subcellular fractions. In the present study, we employed the combination of microwave irradiation and fixation in 4% paraformaldehyde (PFA), with or without 0.1% glutaraldehyde (GA), to enhance the accuracy of ultrastructural localization of GSH-PO in rat liver. A small block of liver was irradiated by microwave for 10 sec in cold cacodylate-buffered 4% PFA containing 0.1% GA. After further immersion of the tissue in 4% PFA at 4 degrees C for 1-6 hr, the standard procedure for pre-embedding immunoelectron microscopy was employed. We observed partial inhibition of artifactual diffusion of cytosolic GSH-PO into the nuclei and consistent GSH-PO localization in mitochondria. Dual localization of this enzyme in the cytosol and mitochondria of normal rat hepatocytes was thus confirmed.  相似文献   

12.
Glutathione, which is found in high levels in eye tissues, is involved in multiple functions, including serving as an antioxidant and as an electron donor for peroxidases. Although the activities of enzymes related to glutathione metabolism have been reported in the eye, the issue of which cells produce these proteins, where they are produced and at what levels is an important one. Glutathione reductase, an enzyme which recycles oxidized glutathione by transferring electrons from NADPH, was localized immunohistochemically in adult rat eye in this study. The reductase was distributed in the corneal and conjunctival epithelia, corneal keratocytes and endothelium, iridial and ciliary epithelia, neural retina, and retinal pigment epithelium. In addition, it was highly expressed in ganglion cells, which are responsible for transmitting photophysiological signals from the retina to the higher visual centres. To clarify the correlation of glutathione reductase expression and oxidative stress, the enzymatic activity and the level of protein expression at the pre- and postnatal stages was examined. Expression of the enzyme was detected first in the ganglion cell layer of a late prenatal stage, and appeared in the inner plexyform layer after birth. Along with an increasing differentiation between the inner nuclear and outer nuclear layers, glutathione reductase expression became detectable in the outer plexyform layer. Pigment epithelial cells were positively stained only after birth. Expression was also detected in the lens epithelium from the prenatal to early postnatal stages although its level was low in the adult lens. Collectively, these data, except for lens epithelia, suggest the pivotal role of glutathione reductase in recycling oxidized glutathione for the protection of the tissues against oxidative stress, which is caused by eye opening accompanied by the initiation of various ocular processes, such as accession of light and transduction of the photochemical signal.  相似文献   

13.
Tissues from male Wistar rats, fixed with 4% paraformaldehyde and embedded in paraffin, were studied with immunoperoxidase techniques using polyclonal antibodies raised against aldehyde oxidase or xanthine oxidase purified from rat liver. Immunohistochemical studies demonstrated that aldehyde oxidase-bearing cells were strongly stained in renal tubules, esophageal, gastric, intestinal and bronchial epithelium as well as liver cytoplasm. Weak but positive immunoreactivity was observed on the pulmonary alveolar epithelial cells, gastric glands and intestinal goblet cells. In contrast, it was demonstrated that cells with xanthine oxidase were strongly stained in renal tubules, esophageal, gastric, and small and large intestinal and bronchial epithelia etc. Positive immunostaining was also found in adrenal gland, skeletal muscle, spleen and cerebral hippocampus. Immunoreactivity againt aldehyde oxidase was not found in adrenal gland, spleen, mesentery or aorta, while immunoreactivity against xanthine oxidase was not found in mesentery or aorta. Although the significance of this ubiquitous and similar localization of aldehyde and xanthine oxidase seems unclear at present, these results may provide a clue as to the full understanding of the pathophysiological role of these oxidases in tissues.  相似文献   

14.
15.
16.
A histochemical method has been developed for the localization of glutathione (GSH) in frozen sections from various tissues including liver, lung, kidney, testis and eye. The reliability and specificity of the method has been investigated by comparing the rates of reaction in tissue and gelatin sections and after depletion of GSH in liver by diethyl maleate. In principle, the method is based on the formation of an irreversible complex of mercury orange with the --SH group of GSH. A 5-min staining period was found to be optimal for staining the --SH group of GSH. In brief, frozen sections 8 mu thick are stained with a 50 muM solution of mercury orange dissolved in toluene, counterstained in 0.05 per cent methylene blue and mounted in Histoclad. Pretreatment of the sections with fixatives or drying them in air completely prevented the staining. In hepatic lobules the brick red granules of the GSH mercury orange complex were distributed uniformly, whereas in other tissues they were not uniform. The GSH staining was localized in the proximal convoluted tubules in the cortex of the kidney, the interalveolar epithelial cells of lungs, the epididymis and the capsule of testis, epithelial cells of vas deferens and the periphery of the lens.  相似文献   

17.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is an ubiquitous antioxidant enzyme, but the exact expression pattern in mammalian tissues is still unknown. The expression and cellular localization of PHGPx mRNA were examined in male mice using real time-polymerase chain reaction and in situ hybridization techniques. The rank order of PHGPx mRNA expression across tissues exhibiting substantial levels of expression was:testes ≫ heart > cerebrum ≥ ileum > stomach = liver = jejunum ≥ epididymis. In testes, PHGPx mRNA was highly expressed in spermiogenic cells and Leydig cells. The signal was also expressed in the molecular layer, Purkinje cell layer, and white matter of cerebellum, the pituicytes of neurohypophysis, the parafollicular cells and follicular basement membrane of thyroid, the exocrine portion of pancreas, the tubular epithelium of kidney, the smooth muscle cells of arteries, and the red pulp of spleen. In the gastrointestinal tract, PHGPx mRNA expression was mainly observed in the keratinized surface epithelium of forestomach, the submucosal glands and serosa layers, and further the Paneth cells of intestines. PHGPx mRNA appeared to be ubiquitously expressed in the parenchyma of heart, liver, and lung. These results indicate that PHGPx exhibits a cell- and tissue-specific expression pattern in mice.  相似文献   

18.
19.
The immunohistochemical localization of cellular retinol-binding protein (CRBP) was studied in rat testis and epididymis. Parallel studies were also carried out on the localization of plasma retinol-binding protein (RBP) and transthyretin (TTR) in testis. The studies employed antibodies purified by immunosorbent affinity chromatography, permitting the specific staining and localization of each antigen by the unlabeled peroxidase-antiperoxidase method. For RBP and TTR, specific immune staining was found in the interstitial spaces between the seminiferous tubules, and not in the tubules themselves. In contrast, strong specific immune staining for CRBP was found in the seminiferous tubules, with a striking localization within Sertoli cells. Moreover, a distinct cyclic variation of specific staining for CRBP within Sertoli cells was observed during the spermatogenic cycle. This cyclic variation was seen with regard to both the intensity of staining and to the anatomic distribution of CRBP within the Sertoli cells. Within the epididymis CRBP was selectively localized to the proximal portion of the caput epididymidis, with variations in intensity of the staining of the epithelium of the ducts in different histological zones. Specific immune staining for CRBP was very weak or absent in the other portions of the epididymis. These results were confirmed by radioimmunoassay. Vitamin A-deficient rats showed markedly reduced specific immune staining for CRBP in both testes and epididymides, and greatly reduced levels of CRBP in these tissues on radioimmunoassay. These studies on the localization of CRBP provide information concerning the specific cells and anatomic loci within the testis and epididymis where retinol may be playing an important role in sperm formation and maturation.  相似文献   

20.
This is the first report to describe the successful detection of human gastrointestinal glutathione peroxidase in normal tissues by Western blotting and immunohistochemical staining techniques. Four hybridoma clones producing monoclonal antibodies (MAbs) against the human gastrointestinal glutathione peroxidase were established from mice immunized with a gastrointestinal glutathione peroxidase-derived peptide. The MAbs did not crossreact with other members of the glutathione peroxidase family, be it cellular glutathione peroxidase, phospholipid hydroperoxide glutathione peroxidase, or extracellular glutathione peroxidase. Although the MAbs were found to react with a 24-kD protein in a Western blotting assay using gastric carcinoma cell extracts as antigen, they did not react with a B-lymphoblastoid cell extract. Immunohistochemical staining showed gastrointestinal glutathione peroxidase localized in the cytoplasm and in the nucleus of gastric carcinoma cells. Moreover, gastrointestinal glutathione peroxidase was detected in tissue extracts of human stomach, small intestine, large intestine, liver, and gallbladder by Western blotting, and its localization was immunohistochemically confirmed in the mucosal epithelia of the basal area of gastric pits and intestinal crypts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号