首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Techniques and experiments are described concerned with the millisecond kinetics of EPT-detectable changes brought about in cytochrome c oxidase by reduced cytochrome c and, after reduction with various agents, by reoxidation with O2 or ferricyanide. Some experiments in the presence of ligands are also reported. Light absorption was monitored by low-temperature reflectance spectroscopy. 2. In the rapid phase of reduction of cytochrome c oxidase by cytochrome c (less than 50 ms) approx. 0.5 electron equivalent per heme a is transferred mainly to the low-spin heme component of cytochrome c oxidase and partly to the EPR-detectable copper. In a slow phase (less than 1 s) the copper is reoxidized and high-spin ferric heme signals appear with a predominant rhombic component. Simultaneously the absorption band at 655 nm decreases and the Soret band at 444 nm appears between the split Soret band (442 and 447 nm) of reduced cytochrome a. 3. On reoxidation of reduced enzyme by oxygen all EPR and optical features are restored within 6 ms. On reoxidation by O2 in the presence of an excess of reduced cytochrome c, states can be observed where the low-spin heme and copper signals are largely absent but the absorption at 655 nm is maximal, indicating that the low-spin heme and copper components are at the substrate side and the component(s) represented in the 655 nm absorption at the O2 side of the system. On reoxidation with ferricyanide the 655 nm absorption is not readily restored but a ferric high-spin heme, represented by a strong rhombic signal, accumulates. 4. On reoxidation of partly reduced enzyme by oxygen, the rhombic high-spin signals disappear within 6 ms., whereas the axial signals disappear more slowly, indicating that these species are not in rapid equilibrium. Similar observations are made when partly reduced enzyme is mixed with CO. 5. The results of this and the accompanying paper are discussed and on this basis an assignment of the major EPR signals and of the 655 nm absorption is proposed, which in essence is that published previously (Hartzell, C.R., Hansen, R.E. and Beinert, H. (1973) Proc. Natl. Acad. Sci. U.S. 70, 2477-2481). Both the low-spin (g=o; 2.2; 1.5) and slowly appearing high-spin (g=6; 2) signals are attributed to ferric cytochrome a, whereas the 655 nm absorption is thought to arise from ferric cytochrome a3, when it is present in a state of interaction with EPR-undectectable copper. Alternative possibilities and possible inconsistencies with this proposal are discussed.  相似文献   

2.
Glycerol oxidase purified from Aspergillus japonicus AT 008 had Mr = 400,000 and contained 1 mol of protoheme IX and 2 g atoms of copper/mol of enzyme protein. The absorption maxima of the oxidized form were found at 557, 530, 420, 280, and 238 nm, and those of the reduced form at 557 and 430 nm. Anaerobic addition of glycerol to the enzyme produced both a shift of the Soret band from 420 to 410 nm and bleaching of the alpha and beta bands at 557 and 530 nm. The ESR spectrum of glycerol oxidase showed three major signals at g = 1.99, g = 2.00, and g = 2.02. The signals at g = 1.99 and g = 2.02 were diminished by the anaerobic addition of glycerol, and the three signals completely disappeared after the addition of either dithionite or diethyldithiocarbamate. Exposure of glycerol oxidase to a borate buffer of pH 10.0 resulted in activation of the enzyme with concomitant enhancement of the ESR signals at g = 1.99 and g = 2.02. Since glycerol oxidase acts predominantly on glycerol, the enzyme can be employed in a specific colorimetric assay for serum triglycerides in combination with lipoprotein lipase.  相似文献   

3.
1. Techniques and experiments are described concerned with the millisecond kinetics of EPR-detectable changes brought about in cytochrome c oxidase by reduced cytochrome c and, after reduction with various agents, by reoxidation with O2 or ferricyanide. Some experiments in the presence of ligands are also reported. Light absorption was monitored by low-temperature reflectance spectroscopy.2. In the rapid phase of reduction of cytochrome c oxidase by cytochrome c (< 50 ms) approx. 0.5 electron equivalent per hame a is transferred mainly to the low-spin heme component of cytochrome c oxidase and partly to the EPR-detectable copper. In a slow phase (> 1 s) the copper is reoxidized and high-spin ferric heme signals appear with a predominant rhombic component. Simultaneously the absorption band at 655 nm decreases and the Soret band at 444 nm appears between the split Soret band (442 and 447 nm) of reduced cytochrome a.3. On reoxidation of reduced enzyme by oxygen all EPR and optical features are restored within 6 ms. On reoxidation by O2 in the presence of an excess of reduced cytochrome c, states can be observed where the low-spin heme and copper signals are largely absent but the absorption at 655 nm is maximal, indicating that the low-spin heme and copper components are at the substrate side and the component(s) represented in the 655 nm absorption at the O2 side of the system. On reoxidation with ferricyanide the 655 nm absorption is not readily restored but a ferric high-spin heme, represented by a strong rhombic signal, accumulates.4. On reoxidation of partly reduced enzyme by oxygen, the rhombic high-spin signals disappear within 6 ms, whereas the axial signals disappear more slowly, indicating that these species are not in rapid equilibrium. Similar observations are made when partly reduced enzyme is mixed with CO.5. The results of this and the accompanying paper are discussed and on this basis an assignment of the major EPR signals and of the 655 nm absorption is proposed, which in essence is that published previously (Hartzell, C. R., Hansen, R. E. and Beinert, H. (1973) Proc. Natl. Acad. Sci. U.S. 70, 2477–2481). Both the low-spin (g = 3; 2.2; 1.5) and slowly appearing high-spin (g = 6; 2) signals are attributed to ferric cytochrome a, whereas the 655 nm absorption is thought to arise from ferric cytochrome a3, when it is present in a state of interaction with EPR-undetectable copper. Alternative possibilities and possible inconsistencies with this proposal are discussed.  相似文献   

4.
Time-dependent changes in the optical spectrum (450–920 nm) of cytochrome c oxidase, following oxidation with oxygen of the stoichiometrically reduced form, have been investigated and where possible, attempts have been made to correlate our observations with variations in the EPR spectrum over a parallel time course at 2°C. In this regard, particular emphasis has been placed on establishing absorption features related to the presence of EPR resonances at g 5, 1.78 and 1.69, which have been tentatively assigned to a spin-coupled state involving cytochrome a3 and ‘EPR-undetectable Cu’ (Beinert, H., Shaw, R.W., Dunham, R.W. and Sands, R.H. (1982) in Oxidases and Related Redox Systems (King, T.E., Mason, H.S. and Morrison, M., eds.), Pergamon Press, Oxford, in the press). For optical studies we have used a versatile rapid-scanning spectrophotometer to obtain well resolved spectra down to 2 ms reaction time. Concomitant with the appearance (within 10 ms) of EPR signals at g 5, 1.78 and 1.69 is the presence of an enhanced absorption (Δε = 0.25 mM (heme a)?1·cm?1) at 660 nm, with a trough (relative to following spectra) at 580 nm. In our hands, this feature disappears in a first-order process with a half-life of 46 s at pH 7.2 and 2°C. The effect of this spectral transformation is to decrease considerably the acuteness of the 655 nm absorption band, previously suggested as representing a state of the enzyme in which ferric cytochrome a3 is coupled to oxidised EPR-undetectable Cu (Beinert, H., Hansen, R.E. and Hartzell, C.R. (1976) Biochim. Biophys. Acta 423, 339–355). This observation can be correlated satisfactorily with a small field shift of the high-field resonances at g 1.78 and 1.69 and a broadening at g 1.78. Support for this and further correlative assignments arises from parallel experiments using cytochrome c oxidase purified via an alternative procedure, which displays different kinetic behavior. Further transformations of the oxidized enzyme are evident through an approx. 10% decrease in absorbance at 600 nm together with small changes centered at 640 and 665 nm (which serve to restore the sharpness of the 655 nm band). The kinetics, as analyzed by the Guggenheim procedure using the absorbance at 597 nm, indicate approx. 50% first-order linearity (half-life 40 min) with additional species contributing at longer times, while over a parallel time course (0–3 h) the EPR resonances at g 5, 1.78 and 1.69 virtually disappear. These novel signals can also be seen at a lower intensity in samples of cytochrome c oxidase anaerobically reoxidized by porphyrexide and frozen after a 6 min incubation period at 4°C. This observation, along with the establishment of similar optical changes over the time course of 1 min to 3 h, suggests that aerobic and anaerobic reoxidation produce common forms of the enzyme. Comparison of the g 1.78 and 1.69 resonances between samples rapidly aerobically reoxidized in the presence of H216O and H217O yielded no evidence for the presence of any labile oxygen ligand (including OH?, H2O) in the coordination sphere of the species involved.  相似文献   

5.
Pulsed and oxygenated forms of cytochrome c oxidase are believed to be variants of the oxidized enzyme. They were produced as a consequence of one or more reduction-oxidation cycles of the resting form and are characterized by an increase of the alpha band intensity and a red-shift of the Soret absorption band to 428 nm. The rate of decay of these species back to the resting enzyme varies appreciably and appears to depend on the nature of the reductant and/or oxidant used in their preparation. Here we report that if resting oxidase is incubated with either reduced or oxidized cytochrome c and then exposed to dioxygen, an activated form is rapidly produced which appears to be more oxidized than the starting material. This finding suggest some degree of partial reduction of the resting enzyme, but this by itself cannot explain the extent of activation. Our results further question the significance of the optical spectral "signature" of the oxygenated (Okunuki, K., and Sekuzu, I. (1954) Seitaino Kagaka 5, 265-272), pulsed (Antonini, E., Brunori, M., Colosimo, A., Greenwood, C., and Wilson, M. T. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 3128-3132), and "420 nm" species (Kumar, C., Naqui, A., and Chance, B. (1984) J. Biol. Chem. 259, 2073-2076, 11668-11671), which are thought to be activated forms of oxidized cytochrome c oxidase.  相似文献   

6.
Data are presented which were collected in the course of the past ten years and bear on the correlation of absorbance at 800 nm and the EPR signal at g = 2 ('copper signal') of cytochrome c oxidase in various states of oxidation and ligation. Both EPR and optical reflectance spectra were obtained at low temperature (-170 to -190 degrees C). For some sets of samples spectra were recorded in the range 500-1100 nm. A particular efFort was made to study this correlation with what are called 'mixed valence' states (Greenwood, C., Wilson, M.T. and Brunori, M. (1974) Biochem. J. 137, 205-215), when cytochrome a and the EPR-detectable copper are thought to be oxidized and the other components reduced and vice versa. These data show no evidence that the copper component of cytochrome oxidase which has so far not been detected by EPR makes a contribution to the absorption between 800 and 900 nm exceeding 10-15% of the total, which is close to or within the error of the respective measurements. For the various states of the oxidase examined in this work the 700-800 nm region did not appear to be more useful than the 800-900 nm region for determining the state of the EPR-undetectable copper in a reliable way. These conclusions are in agreement with results presented previously from other laboratories concerning the relationship of optical (approx. 800 nm) and EPR spectroscopic (g = 2) data obtained with the enzyme.  相似文献   

7.
The interactions of 5 carcinogenic and 1 non-carcinogenic nitrosamines with hepatic microsomal cytochrome (cyt.) P-450 were investigated, using both optical difference and electron paramagnetic resonance (EPR) spectroscopic methods. Liver microsomes from phenobarbital (PB)-pretreated mice and 3-methylcholanthrene (3-MC)-pretreated rats were used, in order to have an increased specific content of cyt. P-450 and cyt. P-448 respectively. The optical and EPR spectral data obtained in the oxidised state suggest that nitrosamines are able to bind both as substrates and as ligands to the hemoprotein cyt. P-450, depending on the concentration of nitrosamine, its chemical identity and the cytochrome species present. After reduction with dithionite or NADPH in the optical difference spectrum a Soret band developed between 444 and 453 nm to an extent, which is dependent on the particular nitrosamine present. This initial nitrosamine-induced spectrum might represent a ferrous nitric oxide (NO)-cyt. P-450 complex. It appears unstable and is converted kinetically into a spectrum lacking a Soret band, but with a predominant absorbance minimum at about 425 nm. A visible band is located at 585 nm. In the EPR spectrum a sharp 3-line signal around g = 2.01 appears concomitantly. Both spectral parameters are typical of a NO-cyt. P-420 complex. These results, in conjunction with metabolic studies, indicate that nitrosamines are denitrosated by a reductive process in which cyt. P-450 appears to be involved. The resulting NO-cyt. P-450 complex denatures to a NO-cyt. P-420 complex when the dioxygen level is not sufficiently high to complete successfully.  相似文献   

8.
The spectral characteristics of the ‘655 nm’ band of cytochrome oxidase were found to be affected by ligands of the binuclear centre, including formate and chloride, and by the resting/pulsed transition. The band titrated with near n=1 characteristics at a midpoint of about 400 mV, in contrast to haem a3, which exhibits strong redox interaction and a titration range at significantly lower potential. Thus, although the total reduced-oxidised difference spectrum of haem a3, shows a trough at about 655 nm, this characteristic is absent in the low potential region. The 655 nm feature may arise from a charge transfer band of ferric high-spin haem a3, which is modulated by the redox state of CuB, as suggested by Beinert et al. [(1976) Biochim. Biophys. Acta 423, 339–355].  相似文献   

9.
1. The reaction of nitric oxide with oxidized and reduced ascorbate oxidase (L-ascorbate: oxygen oxidoreductase, EC 1.10.3.3) has been investigated by optical absorption measurements and electron paramagnetic resonance, and the results are compared with those of ceruloplasmin. 2. Upon anaerobic incubation of oxidized ascorbate oxidase with nitric oxide a decrease of the absorbance at 610 nm is found, which is due to an electron transfer from nitric oxide to Type-1 copper. 3. In the presence of nitric oxide the EPR absorbance of ascorbate oxidase decreases and shows predominatly a signal with characteristics of Type-2 copper (g parallel = 2.248; A parallel = 188 G), whereas the type-1 copper signal has vanished. 4. Comparison of the intensities of the EPR signals before and after NO-treatment points to the presence of one Type-2 and three Type-1 copper atoms per molecule of ascorbate oxidase. 5. It is shown that the changes in the optical and the EPR spectrum of ascorbate oxidase induced by nitric oxide are reversible. No difference in enzymic activity is found between the native enzyme and the NO-treated enzyme after removal of nitric oxide.  相似文献   

10.
Three complexes of NO with cytochrome c oxidase are described which are all photodissociable at low temperatures as measured by EPR. The EPR parameters of the cytochrome a2+(3)-NO complex are the same both in the fully reduced enzyme and in the mixed-valence enzyme. The kinetics of photodissociation of cytochrome a2+(3)-NO and recombination of NO with cytochrome a2+(3) (in the 30-70 K region) revealed no differences in structure between cytochrome a2+(3) in the fully reduced and the mixed-valence states. The action spectrum of the photodissociation of cytochrome a2+(3)-NO as measured by EPR has maxima at 595, 560 and 430 nm, and corresponds to the absorbance spectrum of cytochrome a2+(3)-NO. Photodissociation of cytochrome a2+(3)-NO in the mixed-valence enzyme changes the EPR intensity at g 3.03, due to electron transfer from cytochrome a2+(3) to cytochrome a3+. The extent of electron transfer was found to be temperature dependent. This suggests that a conformational change is coupled to this electron transfer. The complex of NO with oxidized cytochrome c oxidase shows a photodissociation reaction and recombination of NO (in the 20-40 K region) which differ completely from those observed in cytochrome a2+(3)-NO. The observed recombination occurs at a temperature 15 K lower than that found for the cytochrome a2+(3)-NO complex. The action spectrum of the oxidized complex shows a novel spectrum with maxima at 640 and below 400 nm; it is assigned to a Cu2+B-NO compound. The triplet species with delta ms = 2 EPR signals at g 4 and delta ms = 1 signals at g 2.69 and 1.67, that is observed in partially reduced cytochrome c oxidase treated with azide and NO, can also be photodissociated.  相似文献   

11.
In the presence of micromolar concentrations of H2O2, ferric cytochrome c oxidase forms a stable complex characterized by an increased absorption intensity at 606-607 nm with a weaker absorption band in the 560-580 nm region. Higher (millimolar) concentrations of H2O2 result in an enzyme exhibiting a Soret band at 427 nm and an alpha-band of increased intensity in the 589-610 nm region. Addition of H2O2 to ferric cytochrome c oxidase in the presence of cyanide results in absorbance increases at 444nm and 605nm. These changes are not seen if H2O2 is added to the cyanide complex of the ferric enzyme. The results support the idea that direct reaction of H2O2 with ferric cytochrome a 3 produces a 'peroxy' intermediate that is susceptible to further reduction by H2O2 at higher peroxide concentrations. Electron flow through cytochrome a is not involved, and the final product of the reaction is the so-called 'pulsed' or 'oxygenated' ferric form of the enzyme.  相似文献   

12.
Absorption and EPR spectroscopic properties of purified dimethyl sulfoxide (Me2SO) reductase from Rhodobacter sphaeroides f. sp. denitrificans have been examined. The absence of prosthetic groups other than the molybdenum center in the enzyme has made it possible to study its absorption properties. The enzyme displays multiple absorbance peaks in both the oxidized and the dithionite-reduced forms. The oxidized enzyme has absorbance peaks at 280, 350, 470, 550, and 720 nm while the dithionite-reduced enzyme has peaks at 280, 374, and 645 nm with a shoulder at 430 nm. A comparison of the absorbance spectrum of oxidized Me2SO reductase with that of the molybdenum fragment of rat liver sulfite oxidase shows that the 350 and 470 peaks are common to both proteins. EPR studies of the Mo(V) form of Me2SO reductase show a rhombic signal with g1 = 1.988, g2 = 1.977, g3 = 1.961, and g(ave) = 1.975. The signal shows evidence of coupling to an exchangeable proton with A1 = 1.05, A2 = 1.13, A3 = 0.98, and Aave = 1.05 millitesla. These parameters are similar to those of other Mo enzymes, however, the epr signal of this enzyme differs from those of other Mo hydroxylases in showing only a slight sensitivity to pH and no detectable anion effect. EPR potentiometric titrations of Me2SO reductase gave midpoint potentials of +144 mV for the Mo(VI)/Mo(V) couple and +160 mV for the Mo(V)/Mo(IV) couple at room temperature and +141 mV for the Mo(VI)/Mo(V) couple and +200 mV for the Mo(V)/Mo(IV) couple at 173 K.  相似文献   

13.
Electronic absorption and electron paramagnetic resonance (EPR) spectroscopic examinations revealed that a freshly prepared cytochrome c peroxidase (CCP) contains a penta-coordinated high spin ferric protoheme group. The penta-coordinated high spin state of fresh CCP is maintained in a remarkably wide range of pH (4-8). The freezing of fresh CCP induces the reversible coordination of an internal strong field ligand to the heme iron to form a hexa-coordinated low spin compound, which shows EPR extrema at gx = 2.70, gy = 2.20 and gz = 1.78. In the presence of glycerol the freezing-induced artifacts are eliminated and the fresh enzyme exhibits an EPR spectrum of rhombically distorted axial symmetry with EPR extrema at gx = 6.4, gy = 5.3, and gz = 1.97 at 10 K, characteristic of the penta-coordinated high spin enzyme. Upon aging CCP is converted to a hexa-coordinated high spin state due to the coordination of an internal weak field ligand to the heme iron. This conversion is accelerated at acidic pH values, and its reversibility varies from fully reversible to irreversible depending on the degree of enzyme aging. The aging-induced hexa-coordinated CCP is unreactive with hydrogen peroxide and exhibits an EPR spectrum of purely axial symmetry with extrema at g = 6 and g = 2 and an electronic absorption spectrum with an intensified Soret band at 408 nm (epsilon 408 nm = 120 mM-1 cm-1) and a blue-shifted charge-transfer band at 620 nm. Spectroscopic properties of different coordination and spin states of fresh and aged CCPs are compiled in order to formulate a generalized spectroscopic characterization of penta- and hexa-coordinated high spin ferric hemoproteins.  相似文献   

14.
B.T. Storey  C.P. Lee 《BBA》1973,292(3):554-565

1. Circular dichroism spectra of the cytochromes in membrane fragments derived from sonicated beef heart mitochondria have been obtained in the wavelength region 400–480 nm in which the major absorbance maxima of the heme prosthetic groups are found.

2. 2. Cytochrome oxidase in the mitochondrial membrane fragments has a band of positive ellipticity at 426 nm in the oxidized form and a pronounced band of positive ellipticity at 445 nm in the reduced form. The reduced-minus-oxidized difference molar ellipticity at 445 nm, Δ[θ]445 is 3.0·105 degree·cm−2·dmole−1 heme a for membrane-bound oxidase compared to 1.6·105 degree·cm−2·dmole−1 heme a for the purified oxidase. The membrane-bound oxidase in the reduced form also appears to have a band of negative ellipticity at 426 nm not found in the purified oxidase.

3. 3. When reduced with succinate in the presence of cyanide and oxygen, cytochrome oxidase in the membrane fragments has a positive band at 442 nm very similar to that observed with the purified oxidase.

4. 4. Cytochrome c, which has a positive band at 426 nm in the purified form when reduced, appears to have a negative band at this wavelength in the mito-chondrial membrane fragments which contributes to the pronounced negative band at 426 nm observed in the membrane fragments reduced with succinate in anaerobiosis. There is no evidence for a contribution to the CD spectra of the membrane fragments from cytochrome c1 or from cytochrome b561 in either the oxidized or the reduced form.

5. 5. Cytochrome b566 in the mitochondrial membrane fragments has no detectable CD spectrum in the oxidized form, but has a small positive band at 427 nm and a small negative band at 436 nm in the reduced form. The same CD spectrum is observed with cytochrome b566 reduced with succinate in the presence of antimycin A or 2-heptyl-4-hydroxyquinoline-N-oxide. The same increase in positive ellipticity is observed at 427 nm in the mitochondrial membrane fragments, treated with oligomycin to restore energy coupling, when cytochrome b566 is reduced with succinate in the energized membrane, as is observed in the inhibitor-treated membrane fragments. The absence of a pronounced conformational change in cytochrome b566 on energization, as revealed by its CD spectrum, favors the concept that its reduction by succinate in the energized state is due to reversed electron transport rather than an intrinsic shift in the cytochrome's midpoint redox potential.

Abbreviations: HOQNO, 2-heptyl-4-hydroxy quinoline-N-oxide; PMS, phenazine methosulfate  相似文献   


15.
A Cu-containing nitrous oxide reductase (HdN2OR) from a methylotrophic denitrifying bacterium, Hyphomicrobium denitrificans A3151, has been aerobically prepared and spectroscopically characterized. Purple and blue forms of HdN2OR have been isolated. Each form is a homodimer comprising monomers with a molecular mass of 65 kDa. The visible absorption spectrum of the purple form (designated as form A) exhibits three absorption bands at 480 nm, 540 nm, and 650 nm, with a shoulder near 780 nm, and that of the blue form (designated as form B) shows only one absorption band at 650 nm. Reversible spectral changes, between those of forms A and B, are observed on treatment of these forms with redox reagents. Forms A and B are oxidized and reduced forms, respectively. The 77-K EPR spectrum of form A indicates a seven-line copper hyperfine structure centered at gparallel (gparallel=2.18, Aparallel=4.5 mT), which is characteristic of a mixed-valence binuclear CuA site (Amv), and that of form B exhibits a broad featureless signal (g=2.06). The various spectral data of HdN2OR suggest that form A contains Amv and a mixed-valence tetranuclear CuZ site (Zmv*), while form B includes reduced CuA (Ared) and Zmv*. The pH profiles of N2OR activity of the two forms are similar to each other, and the specific activity at optimum pH 8.8 was estimated to be 45 +/- 5 and 29 +/- 3 micromol.min(-1).mg(-1) for forms A and B, respectively.  相似文献   

16.
17.
The effect of pH on the near-UV absorption spectrum of cytochrome oxidase has been examined. Several lines of evidence implicate a proton binding site that can modulate the optical properties of cytochrome alpha 3 in the resting enzyme. Changing the pH within the range 6.5-10.5 was found to reversibly shift the position of the Soret band over an 11-nm range. The lower pH values caused a progressive blue shift in the Soret band, whereas the high-pH range promoted a gradual red shift. Limiting band positions were approximately 416 and 427 nm. The incubation time required to reach a stable band position varied somewhat as did the actual extent of the shift. In most cases, the shift was associated with an isosbestic point. A pH titration profile for the apparent equilibrium position of the Soret band was obtained. Nonlinear least-squares fitting to a scatter plot, assuming a single acid/base group, showed an apparent pKa of 7.8. Magnetic circular dichroism (MCD) spectra of the low-pH form at 416 nm, the high-pH form at 427 nm, and the cyanide derivative at 428 nm were compared. No evidence of a high-pH-dependent low-spin transition or a change in the redox state of cytochrome a3 was found, confirming earlier work [Baker, G. M., Noguchi, M., & Palmer, G. (1987) J. Biol. Chem. 262, 595-604]. Subtraction of ferricytochrome a [spectrum taken from Vanneste, W. H. (1966) Biochemistry 5, 838-848] from a series of blue-shifting spectra showed a band at 414 nm that progressively gained amplitude and a band at 430 nm that correspondingly lost amplitude. A series of red-shifting spectra showed the opposite behavior with a clear isosbestic point being evident in both cases. The difference extinction change at 414 and 430 nm depended linearly on the position of the Soret band, both showing a reversible dependence on pH. The 430-nm band is noted to be unusually red-shifted for high-spin ferric heme a. An additional, pH-insensitive band was observed at 408-410 nm which was eliminated by treatment with cyanide. The kinetics of the pH-induced blue shift and red shift were obtained at 416 nm by using dual-wavelength method and found to be biphasic, despite the occurrence of an isosbestic point.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The aerobic purification of Pseudomonas nautica 617 nitrous oxide reductase yielded two forms of the enzyme exhibiting different chromatographic behaviors. The protein contains six copper atoms per monomer, arranged in two centers named Cu(A) and Cu(Z). Cu(Z) could be neither oxidized nor further reduced under our experimental conditions, and exhibits a 4-line EPR spectrum (g(x)=2.015, A(x)=1.5 mT, g(y)=2.071, A(y)=2 mT, g(z)=2.138, A(z)=7 mT) and a strong absorption at approximately 640 nm. Cu(A) can be stabilized in a reduced EPR-silent state and in an oxidized state with a typical 7-line EPR spectrum (g(x)=g(y)= 2.021, A(x) = A(y)=0 mT, g(z) = 2.178, A(z)= 4 mT) and absorption bands at 480, 540, and approximately 800 nm. The difference between the two purified forms of nitrous oxide reductase is interpreted as a difference in the oxidation state of the Cu(A) center. In form A, Cu(A) is predominantly oxidized (S = (1)/(2), Cu(1.5+)-Cu(1.5+)), while in form B it is mostly in the one-electron reduced state (S = 0, Cu(1+)-Cu(1+)). In both forms, Cu(Z) remains reduced (S = 1/2). Complete crystallographic data at 2.4 A indicate that Cu(A) is a binuclear site (similar to the site found in cytochrome c oxidase) and Cu(Z) is a novel tetracopper cluster [Brown, K., et al. (2000) Nat. Struct. Biol. (in press)]. The complete amino acid sequence of the enzyme was determined and comparisons made with sequences of other nitrous oxide reductases, emphasizing the coordination of the centers. A 10.3 kDa peptide copurified with both forms of nitrous oxide reductase shows strong homology with proteins of the heat-shock GroES chaperonin family.  相似文献   

19.
1. Despite the same methionine-sulfur:heme-iron:imidazole-nitrogen hemochrome structure observed by x-ray crystallography in four of the seven c-type eukaryotic and prokaryotic cytochromes examined, and the occurrence of the characteristic 695 nm absorption band correlated with the presence of a methionine-sulfur:heme-iron axial ligand in all seven proteins, they fall into two distinct classes on the basis of their EPR and optical spectra. The horse, tuna, and bakers' yeast iso-1 cytochromes c have a predominant neutral pH EPR form with g1=3.06, g2=2.26, and g3=1.25, while the bakers' yeast iso-2 and Euglena cytochromes c, the Rhodospirillum rubrum cytochrome c2, and the Paracoccus denitrificans cytochrome c550 all have a predominant neutral pH EPR form with g1=3.2, g2=2.05, and g3=1.39. The ferricytochromes with g1=3.06 have a B-Q splitting that is approximately 150 cm-1 larger than the ferricytochromes with g1=3.2. 2. Each of the cytochromes displays up to four low spin EPR forms that are in pH-dependent equilibrium and can all be observed at near neutral pH. As the pH is raised the predominant neutral pH form is converted into two forms with g1=3.4 and g1=3.6, identified by comparsion with model compounds and other heme proteins as epsilon-amino:heme-iron:imidazole and bis-epsilon-amino:heme-iron ferrihemochromes, respectively. 3. The pK for the conversion of the predominant neutral pH EPR form into the alkaline pH forms is the same as the pK for the disappearance of the 695 nm absorption band for the cytochromes, even though these pK values range over 2 pH units. This confirms that the g1=3.06 and g1=3.2 forms contain the methionine-sulfur:heme-iron axial ligand while the g1=3.4 and the g1=3.6 forms do not. 4. At extremes of pH, the horse and bakers' yeast iso-1 proteins display several high and low spin forms that are identified, showing that a variety of protein-derived ligands will coordinate to the heme iron including methionine and cysteine sulfur, histidine imidazole, and lysine epsilon-amine. 5. The spectrum of horse cytochrome c with added azide, cyanide, hydroxide, or imidazole as axial ligands has also been examined. 6. From a comparison of the EPR and optical spectral characteristics of these groups of cytochromes with model compounds, it is suggested that the difference between them is due to a change in the hydrogen bonding or perhaps even in the protonation of N-1 of the heme iron-bound histidine imidazole.  相似文献   

20.
An unprecedented [4Fe-4S] iron-sulfur cluster was found in RumA, the enzyme that methylates U1939 in Escherichia coli 23 S ribosomal RNA (Agarwalla, S., Kealey, J. T., Santi, D. V., and Stroud, R. M. (2002) J. Biol. Chem. 277, 8835-8840; Lee, T. T., Agarwalla, S., and Stroud, R. M. (2004) Structure 12, 397-407). Methyltransferase reactions do not involve a redox step. To understand the structural and functional roles of the cluster in RumA, we have characterized redox reactions of the iron-sulfur cluster. As isolated aerobically, RumA exhibits a visible absorbance maximum at 390 nm and is EPR silent. It cannot be reduced by anaerobic additions of dithionite. Photoreduction by deazariboflavin/EDTA gives EPR spectra, the quantity (56% of S = 1/2 species) and details (g(av) approximately 1.96-1.93) of which indicate a [4Fe-4S](1+) cluster in the reduced RumA. Oxidation of RumA by ferricyanide leads to loss of the 390-nm band and appearance of lower intensity bands at 444 and 520 nm. EPR spectra of ferricyanide-oxidized RumA show a fraction (<8%) of the FeS cluster trapped in the [3Fe-4S](1+) form (g(av) approximately 2.011) together with unusual radical-like spectrum (g' values 2.015, 2.00, and 1.95). RumA also reacts with nitric oxide to give EPR spectra characteristic of the protein-bound iron dinitrosyl species. Oxidation of the cluster leads to its decomposition and that could be a mechanism for regulating the activity of RumA under conditions of oxidative stress in the cell. Sequence data base searches revealed that RumA homologs are widespread in various kingdoms of life and contain a conserved and unique iron-sulfur cluster binding motif, CX(5)CGGC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号