首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
外部引导序列(EGSs)是mRNA靶序列互补并引导RNaseP切割的小RNA片段。我们设计与人巨细胞病毒HCMV(Human Cytomegalovirus)UL54基因mRNA序列互补的EGSs,将其与大肠杆菌来源RNaseP催化核心M1RNA构建成M1GS核酶。通过对UL54基因亚克降片转录产物体外切割研究,证实该核酶具备对UL54 mRNA片段的特异切割能力,可以发展成为一种抗病毒试剂。  相似文献   

2.
RNase P核酶对人巨细胞病毒UL54基因mRNA体外切割作用   总被引:2,自引:0,他引:2  
外部引导序列(EGSs)是mRNA靶序列互补并引导RNase P切割的小RNA片段.我们设计与人巨细胞病毒HCMV(Human Cytomegalovirus) UL54基因mRNA序列互补的EGSs,将其与大肠杆菌来源RNase P催化核心M1 RNA构建成M1GS核酶.通过对UL54基因亚克隆片转录产物体外切割研究,证实该核酶具备对UL54 mRNA片段的特异切割能力,可以发展成为一种抗病毒试剂.  相似文献   

3.
引导序列(Guide Sequences,GSs)是与mRNA靶序列互补并引导RNase P切割的小RNA片段。设计与人巨细胞病毒HCMV(Human Cytomegalovirus,HCMv)μ/54基因D片段mRNA序列互补的GS,将其共价结合到大肠杆菌来源RNase P催化核心M1 RNA,构建成T7-M1GS核酶。通过对μ/54基因D片段转录产物体外切割实验和将T7-M1GS构建在含有U6启动子的逆转录病毒载体,与构建在真核载体pEGFP-N1的μ/54基因D片段共转染人宫颈癌细胞系HeLa的体内切割实验,证实该核酶具备对μ/54基因D片段mRNA的特异切割能力,为利用核酶治疗HCMV感染提供实验基础。  相似文献   

4.
引导序列(Guide Sequences,GSs)是与mRNA靶序列互补并引导RNase P切割的小RNA片段。设计与人巨细胞病毒HCMV(Human Cytomegalovirus,HCMV)ul54基因D片段mRNA序列互补的GS,将其共价结合到大肠杆菌来源RNase P催化核心M1 RNA,构建成T7-M1GS核酶。通过对ul54基因D片段转录产物体外切割实验和将T7-M1GS构建在含有U6启动子的逆转录病毒载体,与构建在真核载体pEGFP-N1的ul54基因D片段共转染人宫颈癌细胞系HeLa的体内切割实验,证实该核酶具备对ul54基因D片段mRNA的特异切割能力,为利用核酶治疗HCMV感染提供实验基础。  相似文献   

5.
HCMV是一种广泛存在的疱疹病毒,在免疫抑制和免疫功能低下人群中,HCMV感染可引起严重疾病。RNaseP是细胞内催化tRNA5’末端成熟的酶,当EGSs与靶mRNA互补结合并形成类似tNRA的复合物时,大肠杆菌RNaseP催化亚基M1RNA可具备对靶mRNA特异的催化切割活性。为研究抗病毒制剂,针对HCMVDNA多聚酶UL54mRNA设计并构建特异性的EGS—C6,通过对觇舅基因亚克隆片段转录产物体外切割研究,证实该EGS具备引导M1RNA对UL54mRNA特异切割的能力,可发展成一种新型抗病毒制剂。  相似文献   

6.
对HCMV UL54 mRNA 片段特异性切割的M1GS构建   总被引:4,自引:0,他引:4  
人巨细胞病毒是一种DNA病毒,在人群中一般呈亚临床感染和潜伏感染。为研究病毒基因沉默工具和抗病毒制剂,以人巨细胞病毒UL54基因mRNA序列设计互补的外部引导序列,共价结合到大肠杆菌来源RNaseP催化核心M1RNA上,从而构建成M1GS-T6核酶。通过对DNA聚合酶UL54基因亚克隆片段转录产物体外切割研究,证实该核酶具备对UL54mRNA片段的特异切割能力。  相似文献   

7.
人巨细胞病毒(HCMV)基因在优生优育方面的重要作用,一直受到人们的广泛重视。迄今,随着免疫缺陷病人的增多,HCMV感染对人体健康的危害也日趋严重,发展有效,安全的疫苗即成为防治HCMV疾病的重要手段。本文就国外学者对HCMV疫苗的研究状况做了简要介绍。  相似文献   

8.
人巨细胞病毒是一种DNA病毒,在人群中一般呈亚临床感染和潜伏感染。为研究病毒基因沉默工具和抗病毒制剂,以人巨细胞病毒UL54基因mRNA序列设计互补的外部引导序列,共价结合到大肠杆菌来源RNaseP催化核心M1RNA上,从而构建成M1GS-T6核酶。通过对DNA聚合酶UL54基因亚克隆片段转录产物体外切割研究,证实该核酶具备对UL54mRNA片段的特异切割能力。  相似文献   

9.
人巨细胞病毒是疱疹病毒科的一个成员,在全世界呈广泛分布,现在发现该病毒不只在新生儿,免疫抑制及免疫缺陷患者中导致广泛的临床症状甚至死亡,而且与人类三大疾病--心血管疾病,恶性肿瘤及糖尿病有关,因此在当前人类疾病防治中CMV感染的研究成为一个热门课题。本文就病毒感染的多聚酶链反应诊断方法的研究进展作一介绍。  相似文献   

10.
人巨细胞病毒DNA检测技术的建立和应用   总被引:2,自引:0,他引:2  
  相似文献   

11.
Three hundred and twenty-five breast milk samples were examined for the occurrence of human cytomegalovirus (HCMV) by cell culture method. Virus was isolated from the milk in 1 of 177 samples collected within 6 days after delivery, 2 of 115 samples collected during the period of 7 days to 1 month after delivery, 10 of 33 samples collected over 1 month after delivery. Next, we tried to amplify HCMV DNA from the breast milk samples from HCMV seropositive mothers and seronegative mothers at 1 month after delivery by polymerase chain reaction. HCMV DNA was detected in 12 of 13 samples from seropositive mothers and in none of 7 samples from seronegative mothers. It was thought that all women seropositive for HCMV principally shed the virus into their breast milk at 1 month after delivery.  相似文献   

12.
Seven sequence-specific ribozymes (M1GS RNAs) derived in vitro from the catalytic RNA subunit of Escherichia coli RNase P and targeting the mRNAs transcribed by the UL54 gene encoding the DNA polymerase of human cytomegalovirus were screened from 11 ribozymes that were designed based on four rules: (1) the NCCA-3′ terminal must be unpaired with the substrate; (2) the guide sequence (GS) must be at least 12 nt in length; (3) the eighth nucleotide must be U, counting from the site-1; and (4) around the cleavage site, the sites -1/ 1/ 2 must be U/G/C or C/G/C. Further investigation of the factors affecting the cleavage effect and the optimal ratio for M1GS/substrate was carried out. It was determined that the optimal ratio for M1GS/substrate was 2:1 and too much M1GS led to substrate degrading. As indicated above, several M1GS that cleaved HCMV UL54 RNA segments in vitro were successfully designed and constructed.Our studies support the use of ribozyme M1GS as antisense molecules to silence HCMV mRNA in vitro, and using the selection procedure as a general approach for the engineering of RNase P ribozymes.  相似文献   

13.
Transfer RNA is an essential molecule for biological system, and each tRNA molecule commonly has a cloverleaf structure. Previously, we experimentally showed that some Drosophila tRNA (tRNAAla, tRNAHis, and tRNAi Met) molecules fit to form another, non-cloverleaf, structure in which the 3'-half of the tRNA molecules forms an alternative hairpin, and that the tRNA molecules are internally cleaved by the catalytic RNA of bacterial ribonuclease P (RNase P). Until now, the hyperprocessing reaction of tRNA has only been reported with Drosophila tRNAs. This time, we applied the hyperprocessing reaction to one of human tRNAs, human tyrosine tRNA, and we showed that this tRNA was also hyperprocessed by E. coli RNase P RNA. This tRNA is the first example for hyperprocessed non-Drosophila tRNAs. The results suggest that the hyperprocessing reaction can be a useful tool to detect destablized tRNA molecules from any species.  相似文献   

14.
We present a novel Phi29 DNA polymerase application in RCA-based target RNA detection and analysis. The 3′→5′ RNase activity of Phi29 DNA polymerase converts target RNA into a primer and the polymerase uses this newly generated primer for RCA initiation. Therefore, using target RNA-primed RCA, padlock probes may be targeted to inner RNA sequences and their peculiarities can be analyzed directly. We demonstrate that the exoribonucleolytic activity of Phi29 DNA polymerase can be successfully applied in vitro and in situ. These findings expand the potential for detection and analysis of RNA sequences distanced from 3′-end.  相似文献   

15.
16.
DNA synthesis is the cornerstone of all life forms and is required to replicate and restore the genetic information. Usually, DNA synthesis is carried out only by DNA polymerases semiconservatively to copy preexisting DNA templates. We report here that DNA strands were synthesized ab initio in the absence of any DNA or RNA template by thermophilic DNA polymerases at (a) a constant high temperature (74°C), (b) alternating temperatures (94°C/60°C/74°C), or (c) physiological temperatures (37°C). The majority of the ab initio synthesized DNA represented short sequence blocks, repeated sequences, intergenic spacers, and other unknown genetic elements. These results suggest that novel DNA elements could be synthesized in the absence of a nucleic acid template by thermophilic DNA polymerases in vitro. Biogenesis of genetic information by thermophilic DNA polymerase-mediated nontemplate DNA synthesis may explain the origin of genetic information and could serve as a new way of biosynthesis of genetic information that may have facilitated the evolution of life.

Supplemental materials are available for this article. Go to the publisher's online edition of Nucleosides, Nucleotides, and Nucleic Acids to view the free supplemental file.  相似文献   

17.
We investigated the contribution of peripheral stem-loops to the catalytic activity of an archaeal RNase P RNA, PhopRNA, from Pyrococcus horikoshii OT3. PhopRNA mutants, in which the stem-loops were individually deleted, were prepared and characterized with respect to precursor tRNA (pre-tRNA) cleavage activity in the presence of five RNase P proteins. All the mutants retained the activity to some extent, indicating that they are moderately implicated in catalysis. Further characterization suggested that the stem-loops serve largely as binding sites for the proteins, and that their interactions are predominantly involved in stabilization of the active conformation of PhopRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号