首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine mammal mass strandings have occurred for millions of years, but their origins defy singular explanations. Beyond human causes, mass strandings have been attributed to herding behaviour, large-scale oceanographic fronts and harmful algal blooms (HABs). Because algal toxins cause organ failure in marine mammals, HABs are the most common mass stranding agent with broad geographical and widespread taxonomic impact. Toxin-mediated mortalities in marine food webs have the potential to occur over geological timescales, but direct evidence for their antiquity has been lacking. Here, we describe an unusually dense accumulation of fossil marine vertebrates from Cerro Ballena, a Late Miocene locality in Atacama Region of Chile, preserving over 40 skeletons of rorqual whales, sperm whales, seals, aquatic sloths, walrus-whales and predatory bony fish. Marine mammal skeletons are distributed in four discrete horizons at the site, representing a recurring accumulation mechanism. Taphonomic analysis points to strong spatial focusing with a rapid death mechanism at sea, before being buried on a barrier-protected supratidal flat. In modern settings, HABs are the only known natural cause for such repeated, multispecies accumulations. This proposed agent suggests that upwelling zones elsewhere in the world should preserve fossil marine vertebrate accumulations in similar modes and densities.  相似文献   

2.
Osedax worms subsist entirely on vertebrate skeletons on the seafloor, using root-like tissues to bore into and degrade the bones. Paleontologists have only recently begun to appreciate the possible destructive effect that these worms may have had on the marine vertebrate fossil record and little is known of their evolutionary history. Using microcomputed tomography, we document Osedax-like borings in a fossil whale bone from the Pliocene of Italy and present new data on the borings of extant Osedax worms. The fossil borings are distinguished from those of other known borers and identified as traces of Osedax activity based on diagnostic features. Our results suggest that it is necessary to isolate individual borings for the confident identification of Osedax traces. This is only the second paleogeographic occurrence of Osedax in the fossil record and indicates that by the Pliocene these worms had colonised a large portion of the world's oceans. This is the first evidence for Osedax in the Mediterranean, past or present, and suggests that more species await discovery in this region.  相似文献   

3.
A panel of geochemical techniques is used here to investigate the taphonomy of fossil feathers preserved in association with the skeleton of the Jurassic theropod Anchiornis huxleyi. Extant feathers were analysed in parallel to test whether the soft tissues morphologically preserved in the fossil also exhibit a high degree of chemical preservation. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) indicate that clays and iron oxide pseudomorphs occur in the surrounding sediment and also reveal the preservation of melanosome-like microbodies in the fossil. Carbon gradient along a depth profile and co-occurrence of carbon and sulphur are shown in the fossil by elastic backscattering (EBS) and particle-induced x-ray emission (PIXE), which are promising techniques for the elemental analysis of fossil soft tissues. The molecular composition of modern and fossil soft tissues was assessed from micro-attenuated total reflectance fourier transform infrared spectroscopy (micro-ATR FTIR), solid-state 13C nuclear magnetic resonance (CP-MAS 13C NMR) and pyrolysis gas chromatography mass spectrometry in the presence of TMAH (TMAH-Py-GC-MS). Results indicate that the proteinaceous material that comprises the modern feathers is not present in the fossil feathers. The fossil feathers and the embedding sediment exhibit a highly aliphatic character. However, substantial differences exist between these samples, revealing that the organic matter of the fossil feathers is, at least partially, derived from original constituents of the feathers. Our results suggest that, despite the morphological preservation of Anchiornis feathers, original proteins, that is keratin, were probably not preserved in the 160-myr-old feathers.  相似文献   

4.
Biomineralized skeletons are widespread in animals, and their origins can be traced to the latest Ediacaran or early Cambrian fossil record, in virtually all animal groups. The origin of animal skeletons is inextricably linked with the diversification of animal body plans and the dramatic changes in ecology and geosphere–biosphere interactions across the Ediacaran–Cambrian transition. This apparent independent acquisition of skeletons across diverse animal clades has been proposed to have been driven by co‐option of a conserved ancestral genetic toolkit in different lineages at the same time. This ‘biomineralization toolkit’ hypothesis makes predictions of the early evolution of the skeleton, predictions tested herein through a critical review of the evidence from both the fossil record and development of skeletons in extant organisms. Furthermore, the distribution of skeletons is here plotted against a time‐calibrated animal phylogeny, and the nature of the deep ancestors of biomineralizing animals interpolated using ancestral state reconstruction. All these lines of evidence point towards multiple instances of the evolution of biomineralization through the co‐option of an inherited organic skeleton and genetic toolkit followed by the stepwise acquisition of more complex skeletal tissues under tighter biological control. This not only supports the ‘biomineralization toolkit’ hypothesis but also provides a model for describing the evolution of complex biological systems across the Ediacaran–Cambrian transition.  相似文献   

5.
A sea urchin placed on the sea floor near an active brine seep was recovered after 13 years with detailed soft‐tissue preservation. Growth of an amorphous calcium carbonate solid with small amounts of the mineral bassanite occurred on the spines and test. The solid also exhibits striations at both the macro‐ and microscopic scales that preserve the muscle texture of the sea urchin. Such soft‐tissue replacement and mineralization could lead to exquisite fossilization. Soft‐tissue mineralization has been previously replicated in controlled laboratory conditions; however, this is the first report of the lithologic replication of soft tissues in an open marine experiment. Examples of extraordinary fossil preservation, or Lagersätten, give a distinct snapshot of the past and have led to a greater understanding of the history of life. Soft‐tissue lithification occurs in special circumstances in which local chemical conditions (often mediated by decay or bacterial factors) promote early diagenetic mineralization, the first steps of which are observed in this instance. The preservation of articulated skeletons, especially within echinoderms, is normally attributed to rapid burial, but that may not be necessary given that this urchin was at or very near the sediment–water interface for 13 years.  相似文献   

6.
Abstract:  Cupuladriid cheilostome bryozoans can make new colonies both sexually and asexually. Sexual (aclonal) colonies are derived from larvae while asexual (clonal) colonies result from the fragmentation or division of larger colonies. A number of specialised morphologies exist which either enhance or discourage clonality, and cupuladriids preserve these in their skeletons, meaning that it is possible to count the abundances of individual modes of reproduction in fossil assemblages, and thus measure the mode and tempo of evolution of life histories using fossil colonies. In this paper we categorise, illustrate and describe the various clonal and aclonal methods of propagation in cupuladriids through the Cenozoic. Sexual reproduction is the only aclonal method of propagation, while four clonal methods are described comprising: (1) mechanical fragmentation, (2) autofragmentation, (3) colonial budding and (4) peripheral fragmentation. The processes involved in each are discussed and we explain how their prevalence can be measured in the fossil record using preservable morphologies. Compiling a record of the occurrence and distribution of the various modes of propagation through time and space we discover a general trend of evolution towards more complex modes in all three cupuladriid genera, but a geologically recent extinction of some modes of propagation that has left the present-day assemblage relatively depauperate. We see striking similarities in the general timing of expansion of modes of reproduction between the two most important genera, Cupuladria and Discoporella , although it is clear that Discoporella evolved a much wider range of special morphologies either to enhance or to discourage clonality than did Cupuladria .  相似文献   

7.
Fossil baleen is rare in the sedimentary record. This paper documents the exceptional occurrence of thirty seven fossil whale specimens with preserved baleen in the Neogene Pisco Formation during a transect survey in a limited area west of the Ica River Valley near the town of Ocucaje in southern Peru. The sedimentary layers consist of tuffaceous and diatomaceous sandstones, diatomaceous mudstones, and dolomites, deposited in a shallow marine embayment. Observations of modern whale carcasses on the seafloor and stranded individuals indicate that baleen detaches from the mouth of the whales very rapidly after death, and that bones deteriorate very rapidly as a result of scavenging activity and abrasion. In contrast, the bones of the Pisco Formation whales are exceptionally well preserved, and their baleen is often found in life position suspended from the rostrum. Sedimentary structures found associated with some skeletons indicate tidal and storm processes, suggesting that the environment was not anoxic. This exceptional occurrence of fossil baleen suggests early mineralization of the baleen attachment to the rostrum or rapid burial of the skeletons before any detachment or loss could occur.  相似文献   

8.
A fossil of a colonial organism with pyritized soft tissues of elongated fusiform zooids, found in the middle part of the early Floian Fenxiang Formation in Hubei Province of China, probably represents the oldest reliable record of a hydroid cnidarian. The preservation of the fossil is sufficiently different from that of associated carbonized skeletons of graptolites to exclude affinities with this group. The fossil is unlikely to be a bryozoan because of the mode of budding from proximal, not distal, parts of parent zooids, which is typical rather of hydroids. Although no thecae are preserved, the fossil, named Sinobryon elongatum gen. et sp. nov., is suggested to be a thecate hydroid, possibly related to the Haleciidae. The apparent presence of an advanced member of the thecaphoran Macrocolonia clade in strata 470 Ma old means that much of the hydroid (and cnidarian) diversification preceded the Middle Ordovician.  相似文献   

9.
We describe the manual and digital methods used to prepare an exceptional fossil specimen, as well as the composition of this specimen revealed by these methods. The fossil, a rhinobatoid, is 3-dimensionally preserved in a concretion. Fossils like these are seldom encountered, because flat-bodied animals are traditionally preserved in lithographic beds, or more commonly, are only represented by disassociated dentition. Manual preparation was best conducted with needles and a local application of buffered formic acid and neutralised sodium carbonate. High-resolution computed tomography and post-analysis using the invert ramp option in VGStudio Max 2.0 produced the best results to see the complete skeleton of this specimen. The specimen is distinguishable from the only other known 3D preserved fossil rhinobatoid, the Lower Cretaceous (Albian) genus 2Iansan, and is probably a member of Platyrhinidae.  相似文献   

10.
The early Middle Eocene locality of Grube Messel, near Darmstadt (Germany), is famous for its complete vertebrate skeletons. The degree of preservation of soft tissues, such as body silhouettes, internal organs and gut contents, is frequently remarkable. The present specimen was analyzed for remnants of the reproductive system. Classic anatomy and osteology and high-resolution micro-x-ray were applied to describe the fetus of the European Eocene equoid Eurohippus messelensis. Scanning electronic microscopy (SEM) was used for determination of soft tissue remnants. The fetus is the earliest and best-preserved fossil specimen of its kind. The postcranial fetal skeleton is almost complete and largely articulated, allowing the conclusion that the pregnant mare was in late gestation. The apparent intrauterine position of the fetus is normal for the phase of pregnancy. Death of mare and fetus were probably not related to problems associated with parturition. Soft tissue interpreted as the uteroplacenta and a broad uterine ligament are preserved due to bacterial activity and allow considerations on the evolutionary development of the structures.  相似文献   

11.
Recent analyses and new fossil discoveries suggest that the evolution of hominin limb length proportions is complex, with evolutionary reversals and a decoupling of proportions within and between limbs. This study takes into account intraspecific variation to test whether or not the limb proportions of four early hominin associated skeletons (AL 288-1, OH 62, BOU-VP-12/1, and KNM-WT 15000) can be considered to be significantly different from one another. Exact randomization methods were used to compare the differences between pairs of fossil skeletons to the differences observed between all possible pairs of individuals within large samples of Gorilla gorilla, Pan troglodytes, Pongo pygmaeus, and Homo sapiens. Although the difference in humerofemoral proportions between OH 62 and AL 288-1 does not exceed variation in the extant samples, it is rare. When humerofemoral midshaft circumferences are compared, the difference between OH 62 and AL 288-1 is fairly common in extant species. This, in combination with error associated with the limb lengths estimates, suggests that it may be premature to consider H. (or Australopithecus) habilis as having more apelike limb proportions than those in A. afarensis. The humerofemoral index of BOU-VP-12/1 differs significantly from both OH 62 and AL 288-1, but not from KNM-WT 15000. Published length estimates, if correct, suggest that the relative forearm length of BOU-VP-12/1 is unique among hominins, exceeding those of the African apes and resembling the proportions in Pongo.Evidence that A. afarensis exhibited a less apelike upper:lower limb design than A. africanus (and possibly H. habilis) suggests that, if A. afarensis is broadly ancestral to A. africanus, the latter did not simply inherit primitive morphology associated with arboreality, but is derived in this regard. The fact that the limb proportions of OH 62 (and possibly KNM-ER 3735) are no more human like than those of AL 288-1 underscores the primitive body design of H. habilis.  相似文献   

12.
Fossil mammal long bones from Lower Oligocene from Aubrelong 1 (Quercy) were analysed for a range of elements using electron microprobe technique and infrared spectrometry. Fossil mammal teeth were analysed using electron microprobe technique. Comparison of the fossil samples is made with those of recent samples. Infrared spectra show the decrease and the alteration of the organic matrix content in fossil bones. Values for the elements P, Ca are significantly higher, and S lower in the fossil samples relative to the recent samples. The high concentrations of these elements in the fossil samples are clearly a result of diagenetic alteration. In most fossil sites, all the tissues are enriched in Ca, P contents being higher or lower than in the recent tissues. All the fossil tissues of the Aubrelong site are enriched in P. Thus one may tentatively conclude that there is a relationship between the phosphatic composition of sediment and the behavior of P. The chemical composition of all the fossil tissues seems to converge. The organic and the mineral phases are altered by diagenetic processes.  相似文献   

13.
Kent L. McDonald 《Protoplasma》2014,251(2):429-448
This article presents the best current practices for preparation of biological samples for examination as thin sections in an electron microscope. The historical development of fixation, dehydration, and embedding procedures for biological materials are reviewed for both conventional and low temperature methods. Conventional procedures for processing cells and tissues are usually done over days and often produce distortions, extractions, and other artifacts that are not acceptable for today’s structural biology standards. High-pressure freezing and freeze substitution can minimize some of these artifacts. New methods that reduce the times for freeze substitution and resin embedding to a few hours are discussed as well as a new rapid room temperature method for preparing cells for on-section immunolabeling without the use of aldehyde fixatives.  相似文献   

14.
David Gonçalves 《HOMO》2011,62(5):351-358
The influence of heat-induced shrinkage on the osteometric sexual dimorphism of human skeletons is still poorly known. In order to investigate this issue, a sample composed of 84 Portuguese individuals cremated at a modern crematorium was examined using standard measurements from the femur, the talus and the calcaneus. In addition, sex determination of the sample was attempted by using osteometric standards developed from the Coimbra collection of identified skeletons. This was carried out to assess the extent of the effect of heat-induced shrinkage on the correct classification of known-sex skeletons while using standards developed on unburned skeletons.Results demonstrated that sexual dimorphism was still observable in the sample of calcined bones despite shrinkage. However, the application of conventional osteometric standards was unsuccessful. As expected, shrinkage caused most females to be correctly classified according to sex, but the sex allocation of males was very poor for all standard measurements.The results were obtained on a small sample but suggest that univariate metric techniques specifically developed for calcined bones may be valuable for sex determination. This would bring new methodological possibilities for biological anthropology and would enlarge the set of techniques regarding sex determination of burned skeletal remains.  相似文献   

15.
Carbon replicas of the skeletons of a cultured clone of Dictyocha fibula reveal a surface pattern of bands 4–5 nm wide. Reticular ornamentation previously reported for fossil skeletons is not present. Skeleton formation may proceed from an initial series of dichotomous outgrowths of an elongate, formative vacuole; which later fuse at junctures of the basal ring and supporting bars. The presence or absence of an apical ring may be a function of variation in the duration of the synthetic stage of predivision among individuals within the same clone.  相似文献   

16.
The lack of an established protocol for scanning electron microscopy (SEM) studies on stem cells differentiating into adipogenic lineage led us to develop a protocol for the preparation of differentiated adult bone marrow-derived mesenchymal stem cells (BMSC) for SEM. This protocol describes the procedure to maintain and preserve the structural organization of cellular components following differentiation, for morphological and physical characterization. The fixation of the differentiated cells was followed by dehydration using methanol, and vacuum desiccation before microscopy. The use of longer chain alcohols as dehydrating agents was avoided in our method to reduce the dissolution of lipid deposits in cells, thus allowing the maintenance of their structural integrity. The time period for the processing of samples was reduced by avoiding the osmium tetroxide postfixation and critical point drying. Thus, this protocol helps in determining the potential, fate, and degree of stem cell differentiation. This may be useful for SEM analysis of differentiated cells, especially those grown on various scaffolds.  相似文献   

17.
‘Exceptional fossils’ of dinosaurs preserving feathers have radically changed the way we view their paleobiology and the evolution of birds. Understanding how such soft tissues preserve is imperative to accurately interpreting the morphology of fossil feathers. Experimental taphonomy has been integral to such investigations. One such experiment used a printing press to mimic compaction, done subaerially and without sediment burial, and concluded that the leaking of bodily fluid could lead to the clumping of feathers by causing barbs to stick together such that they superficially resemble simpler, less derived, filamentous structures. Here we use a novel, custom-built experimental setup to more accurately mimic subaqueous burial and compaction under low-energy, fine-grain depositional environments applicable to the taphonomic settings most plumage-preserving ‘exceptional fossils’ are found in. We find that when submerged and subsequently buried and compacted, feathers do not clump together and they maintain their original arrangement. Submersion in fluid in and of itself does not lead to clumping of barbs; this would only occur upon pulling feathers out from water into air. Furthermore, sediment encases the feathers, fixing them in place during compaction. Thus, feather clumping that leads to erroneously plesiomorphic morphological interpretations may not be a taphonomic factor of concern when examining fossil feathers. Our current methodology is amenable to further improvements that will continue to more accurately mimic subaqueous burial and compaction, allowing for various hypothesis testing.  相似文献   

18.
The experimental abrasion of forming bone surfaces was conducted so that such surfaces could be characterized. This is particularly important to bone remodeling studies utilizing scanning electron microscope (SEM) imaging of archeological material. Forming surfaces derived from subadult macaque cranial bone were treated by particle abrasion, water abrasion, sliding abrasion, brushing, manual rubbing, weight, exfoliation, chipping and replication. Acetic acid treatments were also performed. The effects of abrasive agents are specific but generally fall into rough (particle and water abrasion) and smooth (sliding abrasion, brushing, rubbing and weight) categories. Protohistoric human and Plio-Pleistocene hominid subadult craniofacial remains were observed with the SEM for comparison with experimental data. The more recent material appeared smooth, probably as a result of specimen preparation procedures using brushes. Surfaces were still interpretable as forming, however, using a more abrasion-resistant feature called intervascular ridging (IVR) described in this study. The IVR pattern is also recognized on the hominid sample, confirming the possibility of performing remodeling studies on abraded fossil material. The abrasion characteristics are somewhat more difficult to classify, however. Abrasion is defined and discussed relative to remodeling studies and taphonomy. The usefulness of the experimental data reported here, however, in paleoenvironmental reconstruction, has yet to be fully realized. Acid and mechanical preparation techniques are briefly addressed. It is concluded that it is possible to characterize a forming surface as abraded according to the findings of this study and that acid, if handled with care, will more likely preserve microanatomical surface detail. It would also be in everyone's interest to employ a less abrasive cleaning regime on archeological specimens.  相似文献   

19.
Computer-integrated polarisation (CIP) method has been applied satisfactorily in the study of fossils skeletons of Sinopora (tabulate coral, Auloporida and Carboniferous). A previous characterisation of sample by scanning electron microscopy, atomic force microscopy and cathodoluminescence (CL) with the purpose of distinguishing the diagenetical alteration was done. Subsequently, a crystallographic comparison between CIP and electron-backscattering diffraction has been made getting a very good correlation between both methods. The CIP method allows obtaining c-axis orientation images, pole figures, and measure and mapping the misorientation of uniaxial biominerals in recent and fossil skeletons. This technique can only be used in uniaxial biominerals (calcite, quartz and hydroxylapatite), limiting its use for biaxial or bimineralic and polimineralic biominerals. CIP method has good spatial resolution (limited by camera); in our example 90 nm. The main advantage of this technique, versus other with similar properties, is the fast acquisition of data in low and high magnifications. This method does not require special treatment of samples and can be very useful for the analysis of microstructures in thin and ultra-thin sections. CIP method detects diagenetic alterations in fossil skeletons by modifications in the inner arrangement of biominerals, which combined with CL offers valuable geochemical and crystallographic information.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号