首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared the effect of conditioned medium (CM) from several human breast carcinoma cell lines on osteoclast bone resorbing activity and osteoclast apoptosis. Our findings indicate that ability of cancer cell line to increase the in vitro bone resorbing activity is linked to their potential to inhibit osteoclast apoptosis. Cancer cells producing the higher level of M-CSF have the higher osteolytic activity, suggesting that M-CSF originating from cancer cells may contribute, at least in part, to the osteoclast activity at the metastatic site by enhancing their survival. Given that M-CSF plays an important role in the anti-apoptotic effect, we speculated that blocking M-CSF pathway would prevent the CM effects. Small interfering RNA (siRNA) targeting M-CSF and imatinib, a protein tyrosine kinase inhibitor targeting M-CSF receptor, almost completely reversed the CM effect on both osteoclast apoptosis and bone resorption. Blockade of M-CSF pathway could be thus of clinical value in the treatment of breast cancer related bone destruction.  相似文献   

2.
Imatinib mesylate is a tyrosine kinase inhibitor of the ABL, platelet-derived growth factor receptor (PDGFR), and c-kit kinases. Inhibition of BCR-ABL and c-kit accounts for its clinical activity in leukemia and sarcoma, respectively. In this report, we describe other cellular targets for imatinib. Treatment of head and neck squamous carcinoma cells with clinically relevant concentrations of imatinib-induced changes in cell morphology and growth similar to changes associated with epidermal growth factor receptor (EGFR) activation. Imatinib-induced changes were blocked with the EGFR antagonist cetuximab, which suggested direct involvement of EGFR in this process. Western blot analysis of cells incubated with imatinib demonstrated activation of EGFR and downstream signaling that was reduced by inhibition of mitogen-activated protein/extracellular signal-regulated kinase kinase 1 (MEK1) and EGFR, but not Her2/ErbB2. An in vitro kinase assay showed that imatinib did not directly affect EGFR kinase activity, suggesting involvement of EGFR-activating molecules. Inhibitors and neutralizing antibodies against heparin-binding epidermal growth factor-like growth factor (HB-EGF), and to a lesser extent transforming growth factor-alpha, reduced imatinib-mediated mitogen activated protein kinase (MAPK) activation. Imatinib stimulated the rapid release of soluble HB-EGF and the subsequent induction of membrane-bound HB-EGF, which correlated with biphasic MAPK activation. Together, these results suggested that imatinib affects EGFR activation and signaling pathways through rapid release and increased expression of endogenous EGFR-activating ligands. Although, imatinib primarily inhibits tyrosine kinases, it also stimulates the activity of EGFR tyrosine kinase in head and neck squamous tumors. This finding demonstrates the need for careful use of this drug in cancer patients.  相似文献   

3.
Point mutations of bcr-abl tyrosine kinase are the most frequent causes of imatinib resistance in chronic myeloid leukaemia (CML) patients. In most CML cases with BCR-ABL mutations leading to imatinib resistance the second generation of tyrosine kinase inhibitors (TKI- e.g. nilotinib or dasatinib) may be effective. Here, we report a case of a CML patient who during imatinib treatment did not obtain clinical and cytogenetic response within 12 months of therapy. The sequencing of BCR-ABL kinase domains was performed and revealed the presence of a F359I point mutation (TTC-to-ATC nucleotide change leading to Phe-to-Ile amino acid substitution). After 1 month of nilotinib therapy a rapid progression of clinical symptoms was observed. In the presence of the F359I point mutation only dasatinib treatment overcame imatinib and nilotinib resistance.  相似文献   

4.
In previous studies, we found that progesterone was able to induce the expression of platelet-derived growth factor (PDGF) in human breast cancer MCF7 cells. Knowing that imatinib mesylate targets PDGF receptor tyrosine kinase activity, the aim of the present study was to examine the effects of imatinib on progesterone-treated MCF7 cells. Expression of phosphorylated (activated) platelet-derived growth factor receptor-alpha (PDGFRalpha) was detected in MCF7 cells. Interestingly, phosphorylated-PDGFRalpha expression was significantly downregulated by imatinib. The effects of imatinib on cell growth, apoptosis and migration were then analyzed. Imatinib effectively inhibited anchorage-dependent colony formation, and cell viability as evaluated by MTT assay. Corroborating these findings, a significant increase in the percentage of apoptotic cells was also observed when cells were treated with imatinib. Surprisingly, these inhibitory effects were all enhanced by the presence of progesterone. Cell migration assays did also show a reduction in the migratory capacity after incubation with imatinib. These findings reveal that imatinib acts by decreasing MCF7 cell viability, growth and migration, with concomitant increase in apoptosis. Furthermore, incubation with progesterone seems to prompt cells to the inhibitory action of imatinib, probably by sustaining PDGFRalpha activity. The current study points out imatinib as a possible therapeutic strategy in progesterone-dependent breast cancer.  相似文献   

5.
Tumor stroma plays an important role in cancer development. In a variety of tumors, such as breast carcinomas, a desmoplastic response, characterized by stromal fibroblast and collagen accumulation, is observed having synergistic effects on tumor progression. However, the effect of known anticancer drugs on stromal cells has not been thoroughly investigated. Imatinib mesylate is a selective inhibitor of several protein tyrosine kinases, including the receptor of platelet-derived growth factor, an important mediator of desmoplasia. Recently, we have shown that imatinib inhibits the growth and invasiveness of human epithelial breast cancer cells. Here, we studied the effect of imatinib on the proliferation and collagen accumulation in breast stromal fibroblasts. We have shown that it blocks the activation of the extracellular signal-regulated kinase and Akt signaling pathways and up-regulates cyclin-dependent kinase inhibitor p21(WAF1), leading to the inhibition of fibroblast proliferation, by arresting them at the G(0)/G(1) phase of the cell cycle. Imatinib inhibits more potently the platelet-derived growth factor-mediated stimulation of breast fibroblast proliferation. By using specific inhibitors, we have found that this is due to the inhibition of the Akt pathway. In addition, imatinib inhibits fibroblast-mediated collagen accumulation. Conventional and quantitative PCR analysis, as well as gelatin zymography, indicates that this is due to the down-regulation of mRNA synthesis of collagen I and collagen III-the main collagen types in breast stroma-and not to the up-regulation or activation of collagenases matrix metalloproteinase 2 and matrix metalloproteinase 9. These data indicate that imatinib has an antifibrotic effect on human breast stromal fibroblasts that may inhibit desmoplastic reaction and thus tumor progression.  相似文献   

6.
The bacterial endotoxin LPS is a potent stimulator of monocyte and macrophage activation and induces adhesion of monocytes. Morphological changes in response to LPS have not been characterized in detail, however, nor have the signaling pathways mediating LPS-induced adhesion been elucidated. We have found that LPS rapidly induced adhesion and spreading of peripheral blood monocytes, and that this was inhibited by the Src family kinase inhibitor PP1 and the phosphatidylinositide 3-kinase inhibitor LY294002. LPS also stimulated actin reorganization, leading to the formation of filopodia, lamellipodia, and membrane ruffles in Bac1 mouse macrophages. Proline-rich tyrosine kinase 2 (Pyk2), a tyrosine kinase related to focal adhesion kinase, and paxillin, a cytoskeletal protein that interacts with Pyk2, were both tyrosine phosphorylated in response to LPS in monocytes and macrophages. Both tyrosine phosphorylation events were inhibited by PP1 and LY294002. Adhesion also stimulated tyrosine phosphorylation of Pyk2 and paxillin in monocytes, and this was further enhanced by LPS. Finally, Pyk2 and paxillin colocalized within membrane ruffles in LPS-stimulated cells. These results indicate that LPS stimulation of monocytes and macrophages results in rapid morphological changes and suggest that Pyk2 and/or paxillin play a role in this response.  相似文献   

7.
8.
Chronic myeloid leukemia (CML) is characterized by the presence of a constitutively active Abl kinase, which is the product of a chimeric BCR-ABL gene, caused by the genetic translocation known as the Philadelphia chromosome. Imatinib, a selective inhibitor of the Bcr-Abl tyrosine kinase, has significantly improved the clinical outcome of patients with CML. However, subsets of patients lose their response to treatment through the emergence of imatinib-resistant cells, and imatinib treatment is less durable for patients with late stage CML. Although alternative Bcr-Abl tyrosine kinase inhibitors have been developed to overcome drug resistance, a cocktail therapy of different kinase inhibitors and additional chemotherapeutics may be needed for complete remission of CML in some cases. Chlorambucil has been used for treatment of B cell chronic lymphocytic leukemia, non-Hodgkin's and Hodgkin's disease. Here we report that a DNA sequence-specific pyrrole-imidazole polyamide-chlorambucil conjugate, 1R-Chl, causes growth arrest of cells harboring both unmutated BCR-ABL and three imatinib resistant strains. 1R-Chl also displays selective toxicities against activated lymphocytes and a high dose tolerance in a murine model.  相似文献   

9.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in human gastrointestinal tract. We first found that most GISTs expressed KIT, a receptor tyrosine kinase encoded by protooncogene c-kit and that approximately 90% of the sporadic GISTs had somatic gain-of-function mutations of the c-kit gene. Since both GISTs and interstitial cells of Cajal (ICCs) were double-positive for KIT and CD34, GISTs were considered to originate from ICCs or their precursor cells. We also found that germline gain-of-function mutations of the c-kit gene resulted in familial and multiple GISTs with diffuse hyperplasia of ICCs as the preexisting lesion. Moreover, we found that about half of the sporadic GISTs without c-kit gene mutations had gain-of-function mutations of platelet-derived growth factor receptor alpha (PDGFRA) gene that encodes another receptor tyrosine kinase. Imatinib which is known to inhibit constitutively activated BCR-ABL tyrosine kinase in chronic myelogenous leukemia also inhibits constitutive activation of mutated KIT and PDGFRA, and is now being used for metastatic or unresectable GISTs as a molecular target drug. Mutational analyses of c-kit and PDGFRA genes are considered to be significant for prediction of effectiveness of imatinib and newly developed/developing other agents on GISTs. Some mouse models of familial and multiple GISTs have been genetically created, and may be useful for further investigation of GIST biology.  相似文献   

10.
Imatinib mesylate is a selective tyrosine kinase inhibitor that is successfully used in the treatment of chronic myeloid leukaemias and gastrointestinal stromal tumours. The drug is taken orally on a daily basis in order to suppress tumour growth. Unfortunately, the vast majority of patients will eventually progress while on therapy. It is generally thought that this acquired unresponsiveness is due to gene amplification or somatic mutations in the drug’s target genes. However, we have now evidence, based on several in vitro and in vivo observations suggesting that pharmacokinetic resistance may also play a definitive role in the ultimate resistance of patients on chronic imatinib. Our findings may have serious implications for the chronic imatinib treatment of cancer patients.  相似文献   

11.
KIT mutations in GIST   总被引:1,自引:0,他引:1  
  相似文献   

12.
Platelet-derived growth factor (PDGF) has been implicated in smooth muscle cell (SMC) proliferation, a key event in the development of myointimal hyperplasia in vascular grafts. Recent evidence suggests that the PDGF receptor (PDGFR) tyrosine kinase inhibitor, imatinib, can prevent arterial proliferative diseases. Because hyperplasia is far more common at the venous anastomosis than the arterial anastomosis in vascular grafts, we investigated whether imatinib also inhibited venous SMC (VSMC) proliferation, and examined possible differences in its mechanism of action between VSMC and arterial SMC (ASMC). Human ASMC and VSMC were stimulated with PDGF-AB, in the presence or absence of imatinib (0.1-10 microM). Proliferation was assayed using the 5-bromo-2'-deoxyuridine (BrdU) incorporation assay, while PDGFR, Akt and ERK1/2-mitogen activated protein kinase (MAPK) signaling pathways were investigated by immunoblotting. The proliferative response to PDGF at 50 and 100 ng/ml was 32 and 43% greater, respectively, in VSMC than in ASMC. Similarly, PDGF-stimulated proliferation was more sensitive to inhibition by imatinib in VSMC than ASMC (IC(50) = 0.05 microM vs. 0.4 microM; P < 0.01). Imatinib also more effectively inhibited PDGF-induced phosphorylation of PDGFRbeta and Akt in VSMC, compared to ASMC. These data highlight inherent pharmacodynamic differences between VSMC and ASMC in receptor and cell signaling functions and suggest that imatinib therapy may be useful for the prevention of venous stenosis in vascular grafts.  相似文献   

13.
Erbstatin, a tyrosine kinase inhibitor, inhibited epidermal growth factor (EGF)-induced inositol phosphate production in cultured A431 cells. However, it did not inhibit ATP-induced inositol phosphate production. Cytosolic but not membrane-associated phospholipase C was activated by EGF, and erbstatin inhibited enhancement of the phospholipase C activity in EGF-treated cells. Thus, tyrosine kinase of A431 cells is suggested to be functionally involved in phospholipase C activation.  相似文献   

14.
Chronic myeloid leukemia is characterized by the Philadelphia chromosome translocation that causes expression of Bcr-Abl, a deregulated tyrosine kinase. Imatinib mesylate (STI571, Gleevec), a therapeutically used inhibitor of Bcr-Abl, causes apoptosis of Bcr-Abl-positive cells. In the leukemia cell line K562, we observed spontaneous resistance to imatinib at very low frequencies when cells were exposed to the drug (1 micro M) for more than 4 weeks. Surprisingly, in the presence of erythropoietin (Epo), K562 cells were temporarily able to sustain proliferation in the presence of imatinib, and imatinib-resistant clones could be isolated with high frequencies. From such imatinib-resistant, Epo-dependent clones, sublines could be established that were resistant to imatinib in the absence of Epo. Mitogen-activated protein (MAP) kinase activity was inhibited by imatinib treatment but could be partially restored by Epo. Inhibition of MAP kinase or phosphatidylinositol 3-kinase blocked the protective effect of Epo. The data suggest that K562 cells acquire factor dependency under imatinib/Epo treatment, allowing them to escape from imatinib-induced, immediate cell death. This pool of cells provides the basis for the outgrowth of imatinib-resistant clones of unlimited proliferative capacity. Thus, Epo, an endogenous regulator of hematopoiesis, promotes the development of resistance to imatinib.  相似文献   

15.
Enhancement of human monocyte tumoricidal activity by recombinant M-CSF   总被引:8,自引:0,他引:8  
Activated monocytes are an important component of immunologic defense against neoplastic disease. A variety of agents capable of inducing tumoricidal activity have been described, including bacterial LPS, IFN-gamma, IL-1, IL-2, TNF, and GM-CSF. We now show that pretreatment of monocytes with recombinant human macrophage-specific colony stimulating factor (M-CSF) augments the tumoricidal activity of human peripheral blood monocytes induced by other activating agents. Monocytes were preincubated for three days with M-CSF at 10(3) U/ml, washed, and treated for an additional two days with secondary activators. Tumoricidal activity was measured in a 6-h 51Cr-release assay using NK-resistant WEHI 164 cells that had been treated with actinomycin D. Pretreatment of monocytes with M-CSF significantly increased tumoricidal activity induced by LPS, IFN gamma, LPS plus IFN gamma, and LPS plus PMA. Pretreatment with IL-1, IL-2, IL-3, IL-4, or GM-CSF was not as effective as M-CSF in increasing tumoricidal activity. Enhanced tumoricidal activity was directly correlated to the increased TNF production resulting from M-CSF pretreatment. TNF antiserum completely blocked tumoricidal activity, demonstrating that TNF was responsible for the M-CSF-mediated increase in tumor cell lysis. M-CSF pretreatment also enhanced non-TNF mediated tumoricidal activity by monocytes, as seen by increased killing of the TNF-resistant target P815. This study demonstrated that in addition to the role of M-CSF in the proliferation and differentiation of monocyte/macrophage precursors, M-CSF also augments an effector function of mature blood monocytes.  相似文献   

16.
Bcr-Abl fusion tyrosine kinase contributes to leukemic transformation. Imatinib mesylate inhibits Bcr-Abl tyrosine kinase, resulting in a blockage of tyrosine phosphorylation in its downstream pathways. We analyzed the alteration of tyrosine phosphorylation, on BCR/ABL+ chronic myelogenous leukemia cells, after treatment with imatinib mesylate. Data were collected using a two-dimensional gel electrophoresis followed by Western blot and mass spectrometry. The inhibition of Bcr-Abl tyrosine kinase by 2.5 microM imatinib mesylate caused both cell cycle arrest in the G0/G1 phase and increased the portion of apoptotic cells. As a result, the population of leukemic cells decreased by 30% and 70% compared to controls at 24 and 72 h, respectively. Furthermore, treatment with imatinib mesylate altered tyrosine phosphorylation of 24 protein spots as the incubation time proceeded from 0 to 24 and 72 h. Ten of the 24 protein spots are visible at all three times. Four are detectable at both the 0 and 24 h points in time. Eight were detectable only at time 0.  相似文献   

17.
The macrophage colony-stimulating factor (M-CSF, CSF-1) regulates survival, proliferation and differentiation of mononuclear phagocytes, as well as macrophage motility and morphology. The latter features are usually regulated by ECM-mediated activation of integrins and subsequent tyrosine phosphorylation of cellular proteins, including focal adhesion kinase (FAK). FAK is phosphorylated by downstream receptor tyrosine kinases as well. We addressed the question whether M-CSF regulates FAK tyrosine phosphorylation in macrophages, and found that M-CSF induces FAK phosphorylation at all known tyrosine residues. This phosphorylation was dependent on Src. Extracellularly-regulated kinase (ERK), Jun N-terminal kinase (JNK) and phosphatidylinositol-3-kinase (PI3K) were found to be negatively involved in M-CSF-induced FAK phosphorylation, as their inhibition resulted in FAK hyper-phosphorylation. Following M-CSF treatment, FAK and the active forms of M-CSFR and Src were redistributed to the cytoskeleton, where active ERK, JNK and PI3K were detectable. Immunofluorescence showed the presence of FAK and its active form in focal complexes following M-CSF treatment. Moreover, cell spreading and adhesion were impaired when FAK tyrosine phosphorylation was abrogated by either transfection with FRNK, a dominant negative form of FAK, or treatment with a number of inhibitors of upstream FAK-activating signals. These results point to a relevant role for FAK in the regulation of cell spreading and adhesion in macrophages.  相似文献   

18.
Radiation therapy for head and neck cancer can result in extensive damage to normal adjacent tissues such as the salivary gland and oral mucosa. We have shown previously that tyrosine phosphorylation at Tyr-64 and Tyr-155 activates PKCδ in response to apoptotic stimuli by facilitating its nuclear import. Here we have identified the tyrosine kinases that mediate activation of PKCδ in apoptotic cells and have explored the use of tyrosine kinase inhibitors for suppression of irradiation-induced apoptosis. We identify the damage-inducible kinase, c-Abl, as the PKCδ Tyr-155 kinase and c-Src as the Tyr-64 kinase. Depletion of c-Abl or c-Src with shRNA decreased irradiation- and etoposide-induced apoptosis, suggesting that inhibitors of these kinases may be useful therapeutically. Pretreatment with dasatinib, a broad spectrum tyrosine kinase inhibitor, blocked phosphorylation of PKCδ at both Tyr-64 and Tyr-155. Expression of “gate-keeper” mutants of c-Abl or c-Src that are active in the presence of dasatinib restored phosphorylation of PKCδ at Tyr-155 and Tyr-64, respectively. Imatinib, a c-Abl-selective inhibitor, also specifically blocked PKCδ Tyr-155 phosphorylation. Dasatinib and imatinib both blocked binding of PKCδ to importin-α and nuclear import, demonstrating that tyrosine kinase inhibitors can inhibit nuclear accumulation of PKCδ. Likewise, pretreatment with dasatinib also suppressed etoposide and radiation induced apoptosis in vitro. In vivo, pre-treatment of mice with dasatinib blocked radiation-induced apoptosis in the salivary gland by >60%. These data suggest that tyrosine kinase inhibitors may be useful prophylactically for protection of nontumor tissues in patients undergoing radiotherapy of the head and neck.  相似文献   

19.
Imatinib (Glivec or Gleevec) potently inhibits the tyrosine kinase activity of BCR-ABL, a constitutively activated kinase, which causes chronic myelogenous leukemia (CML). Here we report the first almost complete backbone assignment of c-ABL kinase domain in complex with imatinib. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Although M-CSF has been used for myelosuppression due to chemotherapy in patients with solid tumors, the effect of exogenous M-CSF on tumor angiogenesis has not been studied. In this study we showed that M-CSF has the ability to accelerate solid tumor growth by enhancing angiogenesis with a novel mechanism. M-CSF accelerated intratumoral vessel density in tumors inoculated into mice, although it did not accelerate the proliferation of malignant cells and cultured endothelial cells in vitro. In both the absence and the presence of tumors, M-CSF significantly increased the circulating cells that displayed phenotypic characteristics of endothelial progenitor cells in mice. Moreover, M-CSF treatment induced the systemic elevation of vascular endothelial growth factor (VEGF). VEGFR-2 kinase inhibitor significantly impaired the effect of M-CSF on tumor growth. In vivo, M-CSF increased VEGF mRNA expression in skeletal muscles. Even after treatment with carageenan and anti-CD11b mAb in mice, M-CSF increased VEGF production in skeletal muscles, suggesting that systemic VEGF elevation was attributed to skeletal muscle VEGF production. In vitro, M-CSF increased VEGF production and activated the Akt signaling pathway in C2C12 myotubes. These results suggest that M-CSF promotes tumor growth by increasing endothelial progenitor cells and activating angiogenesis, and the effects of M-CSF are largely based on the induction of systemic VEGF from skeletal muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号