首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative genometrics of microorganisms is a relatively new area, in which genome properties are translated into numerical indexes. Such indexes can be used for a comprehensive and comparative analysis of microbial genomes, contributing to the understanding of their evolution. This work presents a new method for quantitative determination of gene strand bias in prokaryotic chromosomes, in which data transformation of gene position skew leads to a numerical index that can be applied to quantitative comparisons of genome organization. It was applied in the comparative analysis of 49 completely sequenced Firmicutes genomes, allowing the distinction of groups defined according to their patterns of gene strand preference. The resulting groups revealed that, regarding gene strand bias, reduced genomes are, in general, the more disordered among Firmicutes, while genomes of extremophile organisms comprehend those with the highest degree of genome organization in this phylum.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
Ribosomal DNAs: an exception to the conservation of gene order in rice genomes   总被引:18,自引:0,他引:18  
rDNA (18S-5.8S-25S rDNA) and 5S rDNA loci were visualized on the chromosomes of six species of the genus Oryza by fluorescence in situ hybridization (FISH) and the labeled rice chromosomes were identified based on their condensation patterns. As a result, the chromosomes harboring rDNA and/or 5S rDNA loci were determined in the complement for all the known rice genomes. Variation in the location of the rDNA loci indicated the transpositional nature of the rDNAs in the genus Oryza, as also suggested in Triticeae and Allium. Comparative analysis of the locations of rDNA loci among rice, maize and wheat revealed that variability in the physical location of the rDNA loci was characteristic of the genus Oryza and also of the genera of Gramineae. This variability in the location of the rDNA loci between evolutionarily related species is in sharp contrast to the conservation of the general order of genes in their genomes.  相似文献   

11.
12.

Background

Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of ‘omics’ data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis.

Results

We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions.

Conclusions

Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0386-y) contains supplementary material, which is available to authorized users.  相似文献   

13.
Plant DNA methylation is its own language, interpreted by the cell to maintain silencing of transposons, facilitate chromatin structure, and to ensure proper expression of some genes. Just as in any language, context is important. Rather than being a simple “on-off switch”, DNA methylation has a range of “meanings” dependent upon the underlying sequence and its location in the genome. Differences in the sequence context of individual sites are established, maintained, and interpreted by differing molecular pathways. Varying patterns of methylation within genes and surrounding sequences are associated with a continuous range of expression differences, from silencing to constitutive expression. These often-subtle differences have been pieced together from years of effort, but have taken off with the advent of methods for assessing methylation across entire genomes. Recognizing these patterns and identifying underlying causes is essential for understanding the function of DNA methylation and its systems-wide contribution to a range of processes in plant genomes. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.  相似文献   

14.
15.
16.
17.
18.
Opalin is a transmembrane protein detected specifically in mammalian oligodendrocytes. Opalin homologs are found only in mammals and not in the genome sequences of other animal classes. We first determined the nucleotide sequences of Opalin orthologs and their flanking regions derived from four prosimians, a group of primitive primates. A global comparison revealed that an evolutionarily conserved region exists in the first intron of Opalin. When the conserved domain was assayed for its enhancer activity in transgenic mice, oligodendrocyte-directed expression was observed. In an oligodendroglial cell line, Oli-neu, the conserved domain showed oligodendrocyte-directed expression. The conserved domain is composed of eight subdomains, some of which contain binding sites for Myt1 and cAMP-response element binding protein (CREB). Deletion analysis and cotransfection experiments revealed that the subdomains have critical roles in Opalin gene expression. Over-expression of Myt1, treatment of the cell with leukemia inhibitory factor (LIF), and cAMP analog (CREB activator) enhanced the expression of endogenous Opalin in Oli-neu cells and activated the oligodendrocyte enhancer. These results suggest that LIF, cAMP signaling cascades and Myt1 play significant roles in the differentiation of oligodendrocytes through their action on the Opalin oligodendrocyte enhancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号