首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Greenhouse experiments were conducted to study the permissible value of vanadium (V) based on the growth and physiological responses of green Chinese cabbage (Brassica chinensis L.), and effects of V on microbial biomass carbon (MBC) and enzyme activities in allitic udic ferrisols were also studied. The results showed that biomass of cabbage grown on soil treated with 133 mg V kg−1 significantly decreased by 25.1% compared with the control (P < 0.05). Vanadium concentrations in leaves and roots increased with increasing soil V concentration. Contents of vitamin C (Vc) increased by 10.3%, while that of soluble sugar in leaves significantly decreased by 54.0% when soil V concentration was 133 mg kg−1, respectively. The uptake of essential nutrient elements by cabbage was disturbed when soil V concentration exceeded 253 mg kg−1. Soil MBC was significantly stimulated by 15.5%, while dehydrogenase activity significantly decreased by 62.8% and urease activity slightly changed at treatment of 133 mg V kg−1 as compared with the control, respectively. Therefore, the permissible value of V in allitic udic ferrisols is proposed as 130 mg kg−1.  相似文献   

2.
Silicate (Si) can enhance plant resistance or tolerance to the toxicity of heavy metals. However, it remains unclear whether Si can ameliorate lead (Pb) toxicity in banana (Musa xparadisiaca) roots. In this study, treatment with 800 mg kg−1 Pb decreased both the shoot and root weight of banana seedlings. The amendment of 800 mg kg−1 Si (sodium metasilicate, Na2SiO3·9H2O) to the Pb-contaminated soil enhanced banana biomass at two growth stages significantly. The amendment of 800 mg kg−1 Si significantly increased soil pH and decreased exchangeable Pb, thus reducing soil Pb availability, while Si addition of 100 mg kg−1 did not influence soil pH. Results from Pb fractionation analysis indicated that more Pb were in the form of carbonate and residual-bound fractions in the Si-amended Pb-contaminated soils. The ratio of Pb-bound carbonate to the total Pb tended to increase with increasing growth stages. Treatment with 100 mg kg−1 Si had smaller effects on Pb forms in the Si-amended soils than that of 800 mg kg−1 Si. Pb treatment decreased the xylem sap greatly, but the addition of Si at both levels increased xylem sap and reduced Pb concentration in xylem sap significantly in the Si-amended Pb treatments. The addition of Si increased the activities of POD, SOD, and CAT in banana roots by 14.2% to 72.1% in the Si-amended Pb treatments. The results suggested that Si-enhanced tolerance to Pb toxicity in banana seedlings was associated with Pb immobilization in the soils, the decrease of Pb transport from roots to shoots, and Si-mediated detoxification of Pb in the plants.  相似文献   

3.
Boron (B) concentrations were investigated in both shoots and roots of Euphorbia macroclada, Verbascum cheiranthifolium, and Astragalus gummifer grown in soil of the Keban, Turkey, Lead–zinc–copper–fluoride mining area, which has an arid climate. Soil B concentrations were also investigated. Plants and their associated soil samples were collected and analyzed by Inductively Coupled Plasma–Mass Spectrometry (ICP-MS). Total B concentrations of soils in the study area were very low (mean: 4.97 mg kg?1) as compared with those in surface soils in other countries. Boron concentrations of plant organs were several times higher than those in their associated soils. The mean values of B concentrations in roots of E. macroclada, V. cheiranthifolium, and A. gummifer were 25, 70, and 69 mg kg?1, respectively, while those in shoots were 75, 115, and 77 mg kg?1, respectively. Results indicate that roots and shoots of plants grown in soils with low B concentrations can be used both as biomonitors for environmental contamination and biogeochemical indicators for B.  相似文献   

4.
Effects of arbuscular mycorrhizal fungus (Glomus mosseae) on the accumulation and speciation of selenium (Se) in alfalfa, maize, and soybean were investigated by using Se(IV)-spiked soil. Mycorrhizal inoculation decreased Se accumulation in roots and shoots of all the plants at Se spiked level of 0 or 2 mg kg−1, while an increased Se accumulation was observed in alfalfa shoots and maize roots and shoots at the spiked level of 20 mg kg−1. Concentration of inorganic Se (especially Se(VI)) in roots and shoots of the three plants was much higher in mycorrhizal than non-mycorrhizal treatment. Mycorrhizal inoculation decreased the portion of total organic Se in plant tissues with the exception of alfalfa and maize shoots at Se spiked level of 20 mg kg−1, in which organic Se portion did not reduced greatly (<5%) for mycorrhizal treatment. Mycorrhizal effects on alfalfa and maize were more obvious than on soybean in terms of root colonization rate, biomass, and Se accumulation.  相似文献   

5.
Ground rubber contains 15?C20 g Zn kg?1 but very low levels of Cd and could serve as an inexpensive byproduct Zn fertilizer. The aim of this investigation was to test Zn release in a soil treated with ground tire rubber and rubber ash compared with commercial Zn fertilizer and a laboratory grade zinc sulfate. A Zn-deficient soil was chosen from wheat fields in Isfahan province, central Iran, and the ground rubber, rubber ash and fertilizer-Zn and laboratory ZnSO4 were added at 0.5 and 2 mg Zn kg?1; 0.5 kg ha?1 would usually correct Zn deficiency in such pot tests. The soil DTPA-extractable Zn was then measured with time and the results were described examining first order, Elovich, power function and parabolic diffusion kinetics models. In the pot experiment, corn (Zea mays L.) plants were exposed to three rates of Zn (0, 20, 40 mg Zn kg?1) from two different sources (ZnSO4 and ground rubber). Ground rubber was applied as 2?C3 mm and <1 mm diameter particles. Zinc treatments were mixed with the soils before planting. At harvest, concentrations of Zn, Pb, and Cd in roots and shoots of corn were measured. Results showed that ground rubber and rubber ash significantly increased the concentration of DTPA-Zn in the soil and this increase was higher than achieved with the commercial Zn fertilizer. At the lower Zn application rate, Zn release followed parabolic diffusion, while at the higher rate the kinetics of release followed power function and Elovich models. There was an increase in Zn concentration of corn shoot and roots by adding of Zn regardless the source of applied Zn. With increase in the rate of rubber used, the shoot Zn uptake increased. The Pb concentration of shoot and Cd concentrations of shoot and roots were low (less than 0.02 mg kg?1) in all treatments. The results showed that the soil DTPA Zn decreases over time if the soil is amended with a soluble form of Zn whereas the reverse was observed if the Zn is added as ground rubber which only gradually transforms. Thus ground rubber and rubber ash offer strong value as Zn fertilizer for Zn deficient soils.  相似文献   

6.
Natural populations of woody perennials on lead-mining sites in the Mechernich area of the Eifel Mountains were investigated with respect to soil factors determining the degree and type of heavy metal tolerance. Salix caprea L. (Goat Willow) grew on soils with up to 17000 mg kg–1 total lead (ca. 4000 mg kg–1 ammonium acetate-exchangeable Pb). Betula pendula Roth (Silver Birch) was found on soils containing as much as 29000 mg kg–1 total lead (7000 mg kg–1 ammonium acetate-exchangeable Pb). Other woody perennials, with the exception of the dwarf shrub Calluna vulgaris, were not found in the contaminated area even though they did occur in the immediate vicinity. The two lead-tolerant tree species did not form mixed populations.Because of a significantly lower Pb/Ca ratio in Salix soils (2.2) compared with Betula soils (7.4), a calcium-dependent mechanism of lead tolerance is suggested for Salix, but not for Betula.The Betula population could be divided into two groups, each showing a highly significant correlation between root-lead content and exchangeable lead amounts in the soil, but with different levels of lead uptake. The only soil factor distinguishing the two groups was found to be the level of soluble phosphate. A distinctly low level of soil phosphate correlated with a high lead concentration in roots of the one group (30000 mg Pb kg–1 DW), whereas high phosphate amounts corresponded with a much lower lead concentration in roots of the other (12000 mg Pb kg–1 DW–1). Since the correlation between lead in the soil and in plants was similar for the two groups, it is concluded that the type of lead tolerance in Betula is determined by the status of plant phosphate nutrition, rather than by simple phosphate precipitation in the soil.A comparison of growth between different populations of Betula seedlings on homogenized soils from the mining area revealed the Mechaernich population to be a distinct ecotype with respect to lead tolerance. The control population obtained from a non-contaminated area exhibited a lower degree of lead tolerance coupled with a two-step strategy of adaptation to lead.  相似文献   

7.
To evaluate the effect of ectomycorrhizal colonization on growth and physiological activity of Larix kaempferi seedlings grown under soil acidification, we grew L. kaempferi seedlings with three types of ectomycorrhizae for 180 days in acidified brown forest soil derived from granite. The soil had been treated with an acid solution (0 (control), 10, 30, 60, and 90 mmol H+ kg−1). The water-soluble concentrations of Ca, Mg, K, Al, and Mn increased with increasing amounts of H+ added to the soil. Ectomycorrhizal development significantly increased in soil treated with 10 and 30 mmol H+ kg−1 but was significantly reduced in soil treated with 60 and 90 mmol H+ kg−1. The concentrations of Al and Mn in needles or roots increased with increasing H+ added to the soil. The total N in seedlings significantly increased with increasing H+ in soil and colonization with ectomycorrhiza. The maximum net photosynthetic rate at light and CO2 saturation (P max) was greater in soil treated with 10 mmol H+ kg−1 than in controls, and was less is soils treated with greater than with 30 mmol H+ kg−1, especially with 60 and 90 mmol H+ kg−1. However, colonization with ectomycorrhiza significantly reduced the concentration of Al and Mn in needles or roots and increased the values of P max and total dry mass (TDM). The relative TDM of L. kaempferi seedlings was approximately 40% at a (BC, base cation)/Al ratio of 1.0. However, ectomycorrhizal seedlings had a 100–120% greater TDM at a BC/Al ratio of 1.0 than non-ectomycorrhizal seedlings, even though the acid treatment reduced their overall growth.  相似文献   

8.
Wallander  Håkan 《Plant and Soil》2000,222(1-2):215-229
Pinus sylvestris seedlings, colonised by ectomycorrhizal (EM) fungi from either of two different soils (untreated forest soil and a limed soil from a clear cut area), were grown with or without biotite as a source of K. The biotite was naturally enriched in 87Sr and the ratio of 87Sr/ 86Sr in the plant biomass was estimated and used as a marker for biotite weathering and compared to estimates of weathering based on foliar content of K. Different nutrient regimes were used to expose the seedlings to deficiencies of K with and without an application of nitrogen (NH4NO3) in excess of seedling demand. The seedlings were grown for 220 days and the elemental composition of the shoots were analysed at harvest. The EM colonisation was followed by analysing the concentration of ergosterol in the roots and the soils. Bacterial activity of the soil was estimated by the thymidine incorporation technique. The concentration of organic acids in the soil solution was measured in the soil in which seedlings colonised by EM fungi from the untreated forest soil were grown. It was found that seedlings colonised by EM fungi from untreated forest soil had taken up more K in treatments with biotite addition compared to seedlings colonised by EM fungi from the limed forest soil (p<0.05). Seedlings from untreated forest soil had larger shoots and contained more K when grown with biotite compared to KCl as K source, indicating that biotite had a stimulatory effect on the growth of these seedlings which was not related to K uptake. Seedlings from the limed soil, on the other hand, had similar foliar K content when grown with either biotite or KCl as K source. The larger uptake of K in seedlings from untreated forest soil was not an effect of a more developed EM colonisation of the roots since seedlings from the limed soil had a higher ergosterol concentration both in the soil and in the roots. Nutrient regimes had no significant influence on the total uptake of K but the 87Sr/ 86Sr isotope ratio in the plant biomass indicated that seedlings grown with excess nitrogen supply had taken up proportionally less Sr from the biotite (1.8% of total Sr content) compared to seedlings grown with a moderate nitrogen supply (5.0%). Furthermore, seedlings grown with excess nitrogen supply had a reduced fungal colonisation of roots and soil and bacterial activity was lower in these soils. The 87Sr/ 86Sr ratio in the plant biomass was positively correlated with fungal colonisation of the roots (r 2=0.98), which may indicate that the fungus was involved in releasing Sr from the biotite. Uptake of K from biotite was not related to the amount of organic acids in the soil solution. Oxalic acid was positively related to the amount of ergosterol in the root, suggesting that oxalic acid in the soil solution originates from the EM symbionts. The accuracy of the estimations of biotite weathering based on K uptake by the seedlings in comparison with the 87Sr/86Sr isotope ratio measured in the shoots is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The objective of this study is to determine the distribution factors and enrichment coefficients between soil and plant parts by studying the accumulation and distribution of selenium (Se) in the roots and shoots of different plants. The plants (9 samples of Euphorbia macroclada, 5 samples of Verbascum cheiranthifolium, 8 samples of Astragalus gummifer) and their associated soil samples were collected from the Keban mining area. The roots and the shoots of these plants, together with the associated soils, were analyzed by ICP-MS. The mean Se value of the contaminated surface soils was found to be two to five times higher than those of previously studied uncontaminated surface soils. Se concentrations of the plant parts were lower than those in their associated alkaline soils, where the plants were grown, except for in the shoots of A. gummifer. Mean Se concentrations in the roots of E. macroclada, V. cheiranthifolium, and A. gummifer were 0.82, 0.22, and 0.47 mg kg?1 on a dry weight basis, respectively, while Se concentrations were 0.29, 0.26, and 2.66 mg kg?1 in the shoots on a dry weight basis, respectively. The enrichment coefficients and the distribution factors of those plants were lower than 1, except for the distribution factors of V. cheiranthifolium and A. gummifer plants. Thus, it appeared that the shoots of these plants could make them efficient bioaccumulator plants for Se because of high distribution factors and enrichment coefficients. Due to such factors, they can also be used to clean or rehabilitate soils and areas contaminated with Se.  相似文献   

10.
To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg−1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables. The amendments plus Zn fertilization further decreased the Cd concentration in vegetables. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability in soils, and it is potential to be an efficient and cost-effective measure to ensure food safety for vegetable production in mildly Cd-contaminated calcareous soils.  相似文献   

11.
Cadmium and cadmium compounds are water soluble, mobile in most soils, bio-available, and tend to bio-accumulate. A pot culture experiment was conducted on contaminated soil to study the influence of lime and organic matter on the mobility of cadmium in spinach and its rhizosphere soil. Application of lime (50% and 100% lime requirement) and organic matter (0.5 and 1% by weight of soil) to soil decreased the availability of Cd to the soil and plant throughout the crop growth. The highest diethylene triamine penta-acetic acid (DTPA) extractable Cd was 10.84 mg kg?1 in the treatment OM0 L0 (No application of organic matter and lime) at 20 days after sowing of spinach. Likewise, the highest Cd concentration in spinach roots and shoots were 19.80 and 17.0 mg kg?1 in the treatment OM0 L0 at 20 days after sowing. The Cd concentration in spinach roots and shoots were decreased by 63.23 and 71.88%, respectively, in the treatment OM1 L100 (application of FYM at 1.0% by weight of soil and lime at 100% lime requirement) after 60 days of growth. The lowest concentrations of Cd in the soil and plant after the harvest of the crop were 2.88 and 4.27 mg kg?1, respectively, in the treatment OM1 L100 and resulted in 65.75 and 71.55% decrease over control (OM0 L0). The highest total chlorophyll content of leaves was 2.19 mg kg?1 of fresh weight in the treatment OM1 L100 at 40 days of crop growth.  相似文献   

12.
Knight  B.  Zhao  F.J.  McGrath  S.P.  Shen  Z.G. 《Plant and Soil》1997,197(1):71-78
The hyperaccumulator Thlaspi caerulescens J & C Presl. was grown in seven different soils collected from around Europe that had been contaminated with heavy metals by industrial activity or the disposal of sewage sludge to land. Zinc accumulation factors (shoot concentration/initial soil solution concentration) ranged from 3500–85 000 with a mean value of around 36 000. This compares with mean accumulation factors of 636, 66 and 122 for Cd, Ca and Mg, respectively. The concentration of Zn in the shoots was much greater than in the roots. The total removal of Zn and Cd ranged from 8 to 30 and from 0.02 to 0.5 mg kg-1 soil, respectively. The Zn concentration in shoots of T. caerulescens correlated, using a curvilinear relationship, with the initial Zn concentration in soil solution (R2 = total Zn 0.78; Zn2+ 0.80). There was no relationship between the uptake of Zn and the total Zn concentration in the soil. In most soils, solution pH increased only slightly after growth of T. caerulescens, indicating that acidification was not the mechanism used to mobilise Zn in the soil. Dissolved organic carbon concentrations generally increased but characterisation of the component organic compounds was not attempted. The concentrations of Zn and Cd in soil solution decreased considerably after growth of T. caerulescens. The percentages of Zn and Cd in soil solution present as free ions also decreased. However, the decrease of Zn in soil solution after growth accounted for only about 1% of the total Zn uptake by T. caerulescens. This was much lower than for Cd, Ca and Mg. The results suggest that either T. caerulescens was highly efficient at mobilising Zn which was not soluble initially, or the soils used had large buffering capacities to replenish soil solution Zn within a short time. This work highlights the need to investigate the role of root exudates on the mobilisation of Zn and Cd in soils by the hyperaccumulator T. caerulescens.  相似文献   

13.
Effects of picolinic acid (2-pyridinecarboxylic acid) and chromium(III) picolinate was studied on the chromium (Cr) accumulation of fodder radish (Raphanus sativus L. convar. oleiformis Pers., cv. Leveles olajretek) and komatsuna (Brassica campestris L. subsp. napus f. et Thoms. var. komatsuna Makino, cv. Kuromaru ) grown in a pot experiment. Control cultures, grown in an uncontaminated soil (UCS; humous sand with pHKCl 7.48, sand texture with 12.4% clay+silt content, organic carbon 0.56%, CaCO3 2.2%, CEC 6.2 cmolc kg–1, Cr 10.6 mg kg–1), accumulated low amounts of chromium (less than 5.4 g g–1) in their roots or shoots. When this UCS was artificially contaminated with 100 mg kg–1 Cr (CrCl3) later picolinic acid treatment promoted the translocation of chromium into the shoots of both species. In fodder radish shoots Cr concentration reached 30.4 g g–1 and in komatsuna shoots 44.5 g g–1. Application of ethylene diamine tetra-acetic acid (EDTA) to this Cr contaminated soil had similar effect to picolinic acid. When the UCS was amended with leather factory sewage sediment (which resulted in 853 mg kg–1 Cr in soil), Cr mobilization was observed only after repeated soil picolinic acid applications. From a galvanic mud contaminated soil (brown forest soil with pHKCl 6.77, loamy sand texture with 26.6% clay+silt content, organic carbon 1.23%, CaCO3 0.7%, CEC 24.5 cmolc kg–1, Cd 5.0 mg kg–1, Cr 135 mg kg–1, and Zn 360 mg kg–1) the rate of Cr mobilization was negligible, only a slight increase was observed in Cr concentration of fodder radish shoots after repeated picolinic acid treatments of soil. Presumably picolinic acid forms a water soluble complex (chromium(III) picolinate) with Cr in the soil, which promotes translocation of this element (and also Cu) into the shoots of plants. The rate of complex formation may be related to the binding forms and/or concentration of Cr in soil and also to soil characteristics (i.e. pH, CEC), since the rate of Cr translocation was the following: artificially contaminated soil > leather factory sewage sediment amended soil > galvanic mud contaminated soil. Four times repeated 10 mg kg–1 chromium(III) picolinate application to UCS multiplied the transport of chromium to shoots, as compared to single 10 mg kg–1 CrCl3 treatment. This also suggests that chromium(III) picolinate is forming in the picolinic acid treated Cr-contaminated soils, and plants more readily accumulates and translocates organically bound Cr than ionic Cr. Picolinic acid promotes Cr translocation in soil-plant system. This could be useful in phytoextraction (phytoremediation) of Cr contaminated soils or in the production of Cr enriched foodstuffs.  相似文献   

14.
Malinowski  D.P.  Belesky  D.P.  Hill  N.S.  Baligar  V.C.  Fedders  J.M. 《Plant and Soil》1998,198(1):53-61
Tall fescue (Festuca arundinacea Schreb.) plants infected by the fungal endophyte Neotyphodium coenophialum (Morgan-Jones & Gams) (Glenn et al., 1996) often perform better than noninfected plants, especially in marginal resource environments. There is a lack of information about endophyte related effects on the rhizosphere of grasses. In a greenhouse experiment, four endophyte-infected (E+) tall fescue clones (DN2, DN4, DN7, DN11) and their endophyte-free (E–) forms were grown in limed (pH 6.3) Porter soil (low fertility, acidic, high aluminum and low phosphorus content, coarse-loamy mixed mesic Umbric Dystrochrept) at three soil P levels (17, 50, and 96 mg P kg-1 soil) for five months. Excluding the genotype effect, endophyte infection significantly increased cumulative herbage DM yield by 8% at 17 mg P kg-1 soil but reduced cumulative herbage DM yield by 12% at 96 mg P kg-1 soil. With increased P availability in the soil, shoot and root DM, and root/shoot ratio in E+ plants were significantly less when compared to E– plants. Endophyte infection increased specific root length at 17 and 50 mg P kg-1soil. At soil P level of 17 mg P kg-1soil, E+ plants had significantly higher P concentrations both in roots and shoots. Similar relationships were found for Mg and Ca. E+ plants had significantly higher Zn, Fe, and Al concentration in roots, and lower Mn and Al concentration in shoots when compared to E– plants. Ergot alkaloid concentration and content in shoot of E+ plants increased with increasing P availability in the soil from 17 to 50 mg P kg-1 but declined again at 96 mg P kg-1 soil. Ergot alkaloid accumulation in roots increased linearly with P availability in the soil. Results suggest that endophyte infection affects uptake of phosphorus and other mineral nutrients and may benefit tall fescue grown on P-deficient soils. Phosphorus seems also to be involved in ergot alkaloid accumulation in endophyte-infected tall fescue.  相似文献   

15.
For the sake of cost and potential environmental risk, it is necessary to minimize the amount of chelants used in chemically enhanced phytoextraction. In the present study, a biodegradable chelating agent, EDDS was added in a hot solution at 90°C to the soil in which garland chrysanthemum (Chrysanthemum coronarium L.) and beans (Phaseolus vulgaris L., white bean) were growing. The application of hot chelant solutions was much more efficient than the application of normal chelant solutions (25°C) in improving the uptake of heavy metals by plants. When 1 mmol kg−1 of EDDS as a hot solution was applied to soil, the concentrations of Cu, Zn and Cd and the total phytoextraction by the shoots of the two plant species exceeded or approximated those in the shoots of plants treated with 5 mmol kg−1 of normal EDTA solution. The concentrations of metals in the shoots of beans were significantly correlated with the relative electrolyte leakage rate of root cells, indicating that the root damage resulting from the hot solution might play an important role in the process of chelant-enhanced metal uptake. The soil leaching study demonstrated that decreasing the dosage of chelant resulted in decreased concentrations of soluble metals in soils. On the 28th day following the application of chelant, the concentrations of soluble metals in the EDDS treated soil were not significantly different from the concentrations in the control soil to which chelants had not been applied. The application of biodegradable EDDS in hot solutions to soil may be an efficient alternative in chemically-enhanced phytoextraction to increase metal removal and to reduce possible leaching.Section Editor: J. Barcelo  相似文献   

16.
The behavior and fate of mercury (Hg) in soil is mainly controlled by adsorption and desorption processes with various adsorbents, particularly dissolved organic matter (DOM). This study was conducted to assess the effect of DOM from wheat straw (DOMw) and swine manure (DOMs) on Hg (II) adsorption of black, red, and fluvo-aquic soils in China. Results showed that the Hg (II) adsorption isotherms fitted well with Langmuir and Freundlich equations. The maximum Hg (II) potential adsorption capacity by the three soils followed this trend: black soil > red soil > fluvo-aquic soil. The amount of Hg (II) adsorbed on the soils significantly decreased when DOMw and DOMs were added to the soil samples. Furthermore, the extent by which DOMw affected the Hg (II) adsorption of the three soils was higher than the effect of equivalent amounts of DOMs. Therefore, DOM is important to determine the fate of Hg (II) and control Hg (II) pollution in the environment.  相似文献   

17.
Peek  C. S.  Robson  A. D.  Kuo  J. 《Plant and Soil》2003,248(1-2):237-246
The effect of phosphorus supply on the formation, morphology and anatomy of cluster roots of Lupinus albus L. cv Ultra grown in a loam and two sandy soils was examined relative to its effect on total root length, shoot weight and the phosphorus concentration of the shoots. The loam soil was most conducive to the formation of cluster roots. Cluster roots growing in the sandy soils developed to a lesser extent on plants of an equivalent phosphorus status, suggesting that some biotic or abiotic factors independent of phosphorus supply were also operating. The presence of mature cluster rootlets on a length of lateral root increased the root surface area by 14–22 times of an equal length of lateral roots not bearing cluster rootlets. The application of phosphorus decreased cluster-root length, whereas total root length showed a steady increase. There was an inverse relationship between cluster-root production and phosphorus concentration in shoots ranging from 2 to 8.5 mg g–1 with the critical phosphorus level for maximum shoot growth being around 2.5 mg g–1. Cluster roots formed in solution culture were not well developed in comparison with those grown in the loam soil or nutrient solution with added loam soil. The organisation of the cluster rootlet was similar to that of the lateral roots. Mature rootlets lacked an apical meristem and a vascular cambium with a reduced root cap and cortical tissue.  相似文献   

18.
Summary Experiments on sitka-spruce seedlings grown in acidic peaty gley soils under green-house conditions, where the soils where doped with increasing amounts of Cd, Cu and Pb up to maximum levels of metal added of 16 ppm, 32 ppm and 400 ppm respectively, showed that the levels of Cd and Pb in shoots and roots increased with increasing levels in the soil, whereas levels of copper appeared to be independent. The addition of these three metals to the soils did not influence the uptake of other heavy metals, or of the nutrients potassium or calcium. Increases in the shoot cadmium levels significantly reduced the yields of the plant shoots. However, the plant yields were only affected by the highest level of lead that was added to the soil (400 ppm Pb) and unaffected by all the copper treatments (0–32 ppm Cu in the soil). The lengths of the sitka-spruce roots were reduced when cadmium and lead levels in the soil exceeded certain threshold concentrations (2.5 ppm total Cd, where 0.3 ppm was extractable with 0.5 M acetic acid; and 48 ppm total Pb, where 1.7 ppm was extractable). However, root lengths were not reduced by copper. This was probably related to the fact that copper appears to be relatively unavailable in the type of soil used, as only 1.1. ppm Cu was extractable from a total of 32 ppm Cu added. Root branching was apparently reduced by increases in the soil levels of cadmium, copper and lead. The roots of some control plants had symbiotic mycorrhizal associations (4 out of 19 plants), whereas the roots of all the plants grown in the soils with added heavy metals did not develop these.  相似文献   

19.
It is important to use proper agronomic management to reduce cadmium (Cd) accumulation in plants, ensuring food safety. To find the most effective agronomic approach, the effect of foliar spraying and seed soaking of zinc (Zn) fertilizers on Cd accumulation in cucumbers (Cucumis sativus L.) grown in two soil Cd levels (2 and 5 mg kg?1 Cd) with and without an immobilizing amendment (red mud, RM) was investigated in the present study. The results showed that the treatment of foliar Zn or seed Zn significantly decreased the Cd concentration in cucumber shoots by about 12–36% in Cd-contaminated soils without amendment. Combined with RM treatment, the foliar Zn treatment further decreased the Cd concentration in cucumber shoots by up to 48–66% in Cd-contaminated soils. There were significant negative correlations between Cd and Zn concentrations in shoots of cucumbers grown in soils treated with RM and foliar Zn. The results revealed that the cucumber seedlings treated with RM and foliar Zn had a higher capacity for limiting the transfer of Cd to aboveground tissues. The results also suggested that increasing seed Zn concentrations sufficiently might act as an efficient, economic, and practical method for decreasing Cd uptake in crops grown in mildly Cd-contaminated and Zn-deficient soils.  相似文献   

20.
Two agriculturally important species of rhizobia, Rhizobium leguminosarum biovar viciae (pea rhizobia) and R. leguminosarum bv. trifolii (white clover rhizobia), were enumerated in soils of a long-term field experiment to which sewage sludges contaminated predominantly with Zn or Cu, or Zn plus Cu, were added in the past. In addition to total soil Zn and Cu concentrations, soil pore water soluble Zn and free Zn2+, and soluble Cu concentrations are reported. Pea and white clover rhizobia were greatly reduced in soils containing ≥200 mg Zn kg-1, and soil pore water soluble Zn and free Zn2+ concentrations ≥7 and ≥3 mg l-1, respectively, in soils of pH 5.9–6. Copper also reduced rhizobial numbers, but only at high total soil concentrations (>250 mg kg-1) and not to the same extent as Zn. Yields of field grown peas decreased significantly as total soil Zn, soil pore water soluble Zn and free Zn+2 increased (R2 = 0.79, 0.75 and 0.75, respectively; P < 0.001). A 50% reduction in seed yield occurred at a total soil Zn concentration of about 290 mg kg-1, in soils of pH 5.9–6. The corresponding soil pore water soluble Zn and free Zn2+ concentrations were about 9 and 4 mg l-1, respectively. Pea seed yields were not significantly correlated with total soil Cu (R2 = 0.33) or soil pore water soluble Cu (R2 = 0.39). Yield reductions were due to a combination of greatly reduced numbers of free-living rhizobia in the soil due to Zn toxicity, thus indirectly affecting N2-fixation, and Zn phytotoxicity. These effects were exacerbated in slightly acidic soils due to increased solubility of Zn, and to some extent Cu, and an increase in the free Zn2+ fraction in soil pore water. The current United Kingdom, German and United States limits for Zn and Cu in soils are discussed in view of the current study. None of these limits are based on toxicity thresholds in soil pore water, which may have wider validity for different soil types and at different pH values than total soil concentrations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号