首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究采用组织学方法观察和比较了达里诺尔湖瓦氏雅罗鱼(Leuciscus waleckii, 碱水种)和松花江瓦氏雅罗鱼(淡水种)在相同碳酸盐碱度胁迫下(CA0、CA30和CA50)鳃组织结构的差异, 探究瓦氏雅罗鱼碱水种耐高碱特性与鳃组织结构微观调整的适应性关系。结果显示, 随着碱度增加, 碱水种鳃丝变宽、鳃小片变长、鳃小片间距变大(P<0.05); 淡水种鳃丝变宽、鳃小片间距变大(P<0.05), 鳃小片长度在CA30时显著变长(P<0.05), 而在CA50时与对照组无明显差异(P>0.05)。碱水种在CA30和CA50的氯细胞数量与对照组相比明显增加, CA50的氯细胞排列更加紧密并且有叠加现象, 扁平上皮细胞变大, 细胞表面增厚; 淡水种在CA30时的氯细胞数量明显多于CA50, 但在碱度胁迫下, 鳃小片出现破损, 扁平上皮细胞、柱细胞和血细胞融合、脱落现象严重。另外, 在碱水种和淡水种鳃耙上皮细胞中发现了大量黏液细胞分泌, 随着碱度增加, 黏液细胞由大而稀疏变为小而密集, 其中碱水种的黏液细胞数量较淡水种多, 而且排列更为整齐、密集。鳃组织学研究结果表明, 瓦氏雅罗鱼碱水种通过保持鳃组织结构和生理功能的完整性达到对高碱环境的长期适应, 而淡水种则因鳃细胞融合、脱落造成生理功能丧失, 不能长期适应高碱环境。研究结果可为淡水鱼类在盐碱水的移植驯化提供依据和指导。  相似文献   

2.
M. Prein  A. Kunzmann 《Zoomorphology》1987,107(3):161-168
Summary The morphology and structural features of the gills of the two Western Baltic pipefish Nerophis ophidion and Syngnathus rostellatus were investigated using scanning electron microscopy. The general anatomy of the gills complies with the general pattern in fish. Several adaptations though, show the highly specialized nature of pipefish gills. The filaments are extremely short, few in number and carry only a few lamellae due to the limited space in the branchial cavity. The lamellae have a widely projecting form yet still have a small area in comparison to other fish. Gill irrigation is performed by a specialized pumping mechanism which forces respiratory water through the small but densely packed gill sieve. Although both species live in the same habitat and belong to the same family, differences in gill morphology were found and are related to different lifestyles. S. rostellatus is the more active species and therefore has more filaments per gill arch, more lamellae per filament, wider projecting lamellae and a more extreme utilisation of available space in the gill cavity through a very densely packed gill sieve. N. ophidion has a stationary mode of life and therefore has a less extreme gill anatomy.  相似文献   

3.
Mitomycin C (MC) was tested for its killing and mutagenic activities in the ad-3 forward-mutation test in Neurospora crassa. The test was conducted in 4 dikaryons of N. crassa in order to determine the effect of the uvs-2 allele, which causes a defect in nucleotide excision repair, on MC-induced killing and ad-3 mutation. These dikaryons were homokaryotic for uvs-2+ (H-12), homokaryotic for uvs-2 (H-59), and heterokaryotic for uvs-2/uvs-2+ (H-70 and H-71). MC induced killing and ad-3 mutation in H-12, but the presence of uvs-2 in the homokaryotic state (H-59) resulted in a great increase in the killing and mutagenic activities of MC. This increased sensitivity to MC-induced killing and mutation conferred by uvs-2 in the homokaryotic state (H-59 vs. H-12) is a different effect than that noted by others for a defect in nucleotide excision-repair in Escherichia coli and Salmonella typhimurium or in human cells. The dikaryons heterokaryotic for uvs-2/uvs-2+ had the same sensitivity to MC as H-12, indicating that for MC-induced killing and ad-3 mutation uvs-2 is recessive to uvs-2+.  相似文献   

4.
This comparative study of the gill morphometrics in scombrids (tunas, bonitos, and mackerels) and billfishes (marlins, swordfish) examines features of gill design related to high rates of gas transfer and the high‐pressure branchial flow associated with fast, continuous swimming. Tunas have the largest relative gill surface areas of any fish group, and although the gill areas of non‐tuna scombrids and billfishes are smaller than those of tunas, they are also disproportionally larger than those of most other teleosts. The morphometric features contributing to the large gill surface areas of these high‐energy demand teleosts include: 1) a relative increase in the number and length of gill filaments that have, 2) a high lamellar frequency (i.e., the number of lamellae per length of filament), and 3) lamellae that are long and low in profile (height), which allows a greater number of filaments to be tightly packed into the branchial cavity. Augmentation of gill area through these morphometric changes represents a departure from the general mechanism of area enhancement utilized by most teleosts, which lengthen filaments and increase the size of the lamellae. The gill design of scombrids and billfishes reflects the combined requirements for ram ventilation and elevated energetic demands. The high lamellar frequencies and long lamellae increase branchial resistance to water flow which slows and streamlines the ram ventilatory stream. In general, scombrid and billfish gill surface areas correlate with metabolic requirements and this character may serve to predict the energetic demands of fish species for which direct measurement is not possible. The branching of the gill filaments documented for the swordfish in this study appears to increase its gill surface area above that of other billfishes and may allow it to penetrate oxygen‐poor waters at depth. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The morphology, gill area and branchial formulae of six thalassinidean decapods ( Calocaris macandreae, Jaxea nocturna, Callianassa subterranea, Upogebia stellata, U. deltaura and U. pusilla ) are reported. Additionally, the rarely-encountered Axius stirhynchus receives brief attention. Gill formulae are presented; the simplest arrangements are found in the Callianassidae and Upogebiidae. The deeper-burrowing, deposit-feeding species that are regularly exposed to prolonged periods of hypoxia, i.e. Callianassa subterranea and Jaxea nocturna , had significantly larger gill areas than thalassinideans that occupied more oxygenated burrows ( Upogebia spp., Calocaris macandreae ). The increase in gill area was a result of flattening of the trichobranchiate gill filaments giving rise to a phylloid gill form. It is suggested that the efficiency of gas transfer, and hence diffusing capacity, was enhanced in the phylloid gill by the larger gill area and, because of the reduced cuticle thickness, by the shorter water-haemolymph diffusion distance. The increased diffusion capacity of the phylloid gill is interpreted as a functional adaptation to the more severe physicochemical burrow water conditions experienced by Callianassa subterranea and Jaxea nocturna .  相似文献   

6.
Summary Arteriovenous anastomoses (AVAs) in the afferent region of trout gill filaments originate from two small filament arteries (Fromm's arteries), which parallel the main afferent filament vessel on either side. As in the efferent filament arteries the origin of AVAs is bordered by specialized endothelial cells. Fromm's arteries originate from efferent filament or branchial arteries. A few extremely narrow connections between the afferent filament artery and Fromm's arteries (= afferent shunts) do exist in some gill filaments. Nevertheless, the AVAs in the afferent filament region carry mainly arterialized blood, or blood plasma, to the central venous sinus of the filament.Supported by the Deutsche Forschungsgemeinschaft (Vo 229/1)  相似文献   

7.
The four paired gill arches of the South American lungfish Lepidosiren paradoxa contain single branchial arteries directly connecting dorsal and ventral arteries. In gill arches 3 and 4 the branchial arteries also supply looped arlerioles and capillaries to much-reduced gill filaments. Regulation of blood between these routes is thought to be by alteration of vascular resistance. Within the filaments, extensive subepithelial capillary networks and numerous small pumps connect lymphatic vessels in the central connective tissue compartment with venules which, in turn, drain to paired branchial veins.
The features of the endothelium of many of the filament blood vessels suggest extensive transporting, haematolytic and granulopoeitic functions. Large numbers of macrophages pack the connective tissue. Many contain extensive quantities of haemosiderin.  相似文献   

8.
Fully-developed eggs of the monogenean Entobdella soleae from the skin of the common sole (Solea solea) hatch when treated with dilute solutions of urea or ammonium chloride in sea water. There is some evidence that arginine may stimulate hatching but the eggs do not respond when treated with sea water solutions containing trimethylamine oxide or glutamine. Sole skin mucus contains sufficient urea to stimulate hatching but insufficient ammonia. Solutions of urea in sea water stimulate hatching in the monogenean parasite Acanthocotyle lobianchi found on ray skin. Sea water solutions containing ammonium chloride and trimethylamine oxide failed to hatch the eggs of A. lobianchi and the eggs were also insensitive to various amino acids made up at concentrations found in host mucus. Experiments with urease confirmed that urea in ray ventral skin mucus is the host hatching factor for A. lobianchi. Skin mucus from the common sole failed to stimulate hatching in A. lobianchi. The role as hatching factors of excretory products in host gill effluent, skin mucus and urine is discussed.  相似文献   

9.
Tunas (family: Scombridae, Tribe: Thunnini) exhibit anatomical, physiological, and biochemical adaptations that dramatically increase the ability of their cardiorespiratory systems to transfer oxygen from the water to the tissues. In the present study the vascular anatomy of the skipjack tuna, Katsuwonus pelamis, gill was examined by light and scanning electron microscopic analysis of methyl methacrylate vascular corrosion replicas prepared under physiological pressure. The gill filament contains three distinct blood pathways, respiratory, interlamellar, and nutrient. The respiratory, or arterio-arterial (AA) pathway, is the site of gas exchange and consists of the afferent and efferent filamental arteries (AFA and EFA) and arterioles (ALA and ELA) and the lamellae. Each ALA in the basal filament supplies ten or more lamellae and they anastomose with their neighbor to form a continuous vascular arcade. Four modifications in the lamellar circulation appear to enhance gas exchange efficiency. 1) The ALA deliver blood directly to the outer margin of the lamellae where unstirred boundary layer effects are predicted to be minimal and water PO2 highest. 2) Pillar cells are closely aligned along the outer boundary of the inlet side and the inner boundary of the outlet side of the lamellae to form multiple distributing and receiving blood channels. 3) Elsewhere in the lamella, pillar cells are aligned to form diagonal channels that direct blood from the outer to the inner lamellar margins, thereby reducing vascular resistance. 4) The lamellar sinusoid is especially widened near the efferent end to augment oxygen saturation of blood flowing through the inner margin. These adaptations, plus the presence of a bow-shaped interlamellar septum, and a thinned filament core appear to decrease gill vascular resistance and maximize gas-exchange efficiency. The interlamellar (IL) and nutrient systems originate from post-lamellar vessels and are arterio-venous (AV) pathways. IL vessels form an extensive ladder-like lattice on both sides of the filamental cartilage and are supplied in part by narrow-bore vessels from the medial wall of the EFA. Their function is unknown. Nutrient vessels are formed from the confluence of a myriad of tortuous, narrow-bore vessels arising from the basal region of the EFA and from efferent branchial arteries. They re-enter the filament and eventually drain into the IL system or filamental veins. As these AV pathways are retained despite considerable reduction in filamental tissue, it is evident that they are integral components of other non-respiratory homeostatic activities of the gill.  相似文献   

10.
In a previous study the alteration in the amino acid sequence of Neurospora crassa NADP-specific glutamate dehydrogenase (GDH) resulting from two mutually compensating frameshift mutations was used to deduce the first 17 nucleotides of the coding sequence of the am gene. In the work reported here, a synthetic 17-mer corresponding to the deduced sequence was shown to hybridize strongly to a 9-kb HindIII fragment from N. crassa wild-type DNA but not to any corresponding fragment from the DNA of a mutant strain known to be deleted for most or all of the gene. Wild-type HindIII fragments were fractionated for size and a fraction centering around 9 kb was cloned in vector λL47. Two clones carrying the strongly hybridizing fragment were identified. The hybridization to the 17-mer was localized within a 2.7-kb BamHI fragment and, within this, to a 700-bp BamHI-BglII subfragment. 5' end-labelled polyadenylated RNA isolated from wild-type mycelium hybridized to the 2.7-kb BamHI fragment and not appreciably to flanking fragments. The partial sequence analysis of the BamHI-BglII fragment has confirmed that the 17-mer probe matches the coding sequence at the 5' end of the gene and has also revealed an intervening sequence 67 bp in length, interrupting codon 15. Both the 9-kb HindIII fragment and the 2.7-kb BamHI fragment have been shown to be capable of transforming the deletion mutant to prototrophy and ability to produce GDH. Analysis of one transformant showed that the am gene was integrated, together with a part of the long arm of the lambda vector, at an unusual locus. This transformant, in which the am gene does not show its normal linkage to the linkage group 5 marker inl, was found to produce GDH to about 20% of the normal level.  相似文献   

11.
Gill morphometrics of the three thresher shark species (genus Alopias) were determined to examine how metabolism and habitat correlate with respiratory specialization for increased gas exchange. Thresher sharks have large gill surface areas, short water–blood barrier distances, and thin lamellae. Their large gill areas are derived from long total filament lengths and large lamellae, a morphometric configuration documented for other active elasmobranchs (i.e., lamnid sharks, Lamnidae) that augments respiratory surface area while limiting increases in branchial resistance to ventilatory flow. The bigeye thresher, Alopias superciliosus, which can experience prolonged exposure to hypoxia during diel vertical migrations, has the largest gill surface area documented for any elasmobranch species studied to date. The pelagic thresher shark, A. pelagicus, a warm‐water epi‐pelagic species, has a gill surface area comparable to that of the common thresher shark, A. vulpinus, despite the latter's expected higher aerobic requirements associated with regional endothermy. In addition, A. vulpinus has a significantly longer water–blood barrier distance than A. pelagicus and A. superciliosus, which likely reflects its cold, well‐oxygenated habitat relative to the two other Alopias species. In fast‐swimming fishes (such as A. vulpinus and A. pelagicus) cranial streamlining may impose morphological constraints on gill size. However, such constraints may be relaxed in hypoxia‐dwelling species (such as A. superciliosus) that are likely less dependent on streamlining and can therefore accommodate larger branchial chambers and gills. J. Morphol. 276:589–600, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
The fungus Neurospora crassa harbors large amounts of cytoplasmic filaments which are homopolymers of a 59-kDa polypeptide (P59Nc). We have used molecular cloning, sequencing and enzyme activity measurement strategies to demonstrate that these filaments are made of pyruvate decarboxylase (PDC, EC 4.1.1.1), which is the key enzyme in the glycolytic-fermentative pathway of ethanol production in fungi, and in certain plants and bacteria. Immunofluorescence analyses of 8–10-nm filaments, as well as quantitative Northern blot studies of P59Nc mRNA and measurements of PDC activity, showed that the presence and abundance of PDC filaments depends on the metabolic growth conditions of the cells. These findings may be of relevance to the biology of ethanol production by fungi, and may shed light on the nature and variable presence of filament bundles described in fungal cells.  相似文献   

13.
14.
Gill mitochondrion-rich (MR) cells contain different molecules to carry out functionally distinct mechanisms. To date, the putative mechanism of Cl(-) uptake through the basolateral chloride channel, however, is less understood. To clarify the Cl(-)-absorbing mechanism, this study explored the molecular and morphological alterations in branchial MR cells of tilapia acclimated to seawater (SW), freshwater (FW), and deionized water (DW). Scanning electron microscopic observations revealed that three subtypes of MR cells were exhibited in gill filament epithelia of tilapia. Furthermore, in DW-acclimated tilapia, the subtype I (ion-absorbing subtype) of MR cells predominantly occurred in gill filament as well as lamellar epithelia. Whole-mount double immunofluorescent staining revealed that branchial ClC-3-like protein and Na(+)/K(+)-ATPase (NKA), the basolateral marker of MR cells, were colocalized in tilapia. In SW-acclimated tilapia, all MR cells of gill filament epithelia exhibited faint fluorescence of ClC-3-like protein. In contrast, only some MR cells in gill filament epithelia of FW and DW tilapia expressed basolateral ClC-3-like protein; however, the fluorescence was more intense in FW and DW tilapia than in SW fish. In hyposmotic groups, the number of MR cells immunopositive for ClC-3-like protein was significantly higher in DW-exposed tilapia. Meanwhile, in gill lamellar epithelia of DW tilapia, all MR cells (subtype I) were ClC-3-like protein immunopositive. Double immunostaining of ClC-3-like protein and Na(+)/Cl(-) cotransporter (NCC) revealed that basolateral ClC-3-like protein and apical NCC were colocalized in some MR cells in FW and DW tilapia. Moreover, both mRNA and protein amounts of branchial ClC-3-like protein were significantly higher in DW-acclimated tilapia. To identify whether the expression of branchial ClC-3-like protein responded to changes in environmental [Cl(-)], tilapia were acclimated to artificial waters with normal [Na(+)]/[Cl(-)] (control), lower [Na(+)] (low Na), or lower [Cl(-)] (low Cl). Immunoblotting of crude membrane fractions for gill ClC-3-like protein showed that the protein abundance was evidently enhanced in tilapia acclimated to the low-Cl environment compared with the other groups. Our findings integrated morphological and functional classifications of ion-absorbing MR cells and indicated that ion-deficient water elevated the numbers of subtype I MR cells in both filament and lamellar epithelia of gills with positive ClC-3-like protein immunostaining and increased the expression levels of ClC-3-like protein. This study is the first to illustrate the exhibition of a basolateral chloride channel potentially responsible for Cl(-) absorption in the ion-absorbing subtype of gill MR cells of tilapia.  相似文献   

15.
Little is known of the cardiovascular functions of prostaglandins in non-mammalian vertebrates. There are indications that prostaglandins may have a function in haemostasis by constricting blood vessels in filament arteries in the fish gill after injury. Our aim was to examine the cardiovascular effect of the prostaglandins F(2 alpha) (PGF(2 alpha)) and E(2) (PGE(2)) with emphasis on branchial circulation. Intra-arterial injections of PGF(2 alpha) (10, 40, 160, 400 nmol kg(-1)) in cod caused a dose-dependent increase in ventral aortic blood pressure, a reduction in cardiac output, and an increase in gill vascular resistance. A contraction of filament arteries was observed with in vivo microscopy only seconds after injection. PGF(2 alpha) may therefore possibly be involved in a haemostatic vasoconstriction. In contrast, the most significant effects of PGE(2) appeared to be on the heart. PGE(2) also reduced dorsal aortic blood pressure.  相似文献   

16.
Three burrow systems produced by Jaxea nocturna and one cluster of burrows produced by Upogebia pusilla where investigated in the Bay of Panzano, Northern Adriatic Sea, to determine preferred orientations. The distributions of dip directions differ between both producers. Steep shafts into the consolidated mud followed by large, shallowly inclined tunnels oriented in a manner similar to a spiral are characteristic for Jaxea nocturna burrows. In contrast, the Y-shaped burrows of Upogebia pusilla have entrance shafts that are less steep which are connected by a near-horizontal section, where a blind ending tunnel branches. Orientations of the dominating, shallowly inclined burrow parts are not randomly distributed in either Jaxea or in Upogebia burrows. Three preferred axial orientations with almost equal proportions in each direction are characteristic for the Jaxea burrow from the centre of the bay. This system transforms to a squared structure near the coast, where one direction parallels the shoreline and the other is oriented at right angles to the coast. The latter orientation demonstrates significant constancy in all investigated burrows. Upogebia burrow clusters coincide with the three preferred orientations of the Jaxea burrow from the bay centre, but the proportions of the directions are unequal. Burrow segments connecting the steep entrance shafts in Upogebia are oriented almost parallel to the shoreline, whereas at right angles to the coast the flat blind-ending tunnels incline towards the open sea. The study shows a strong coincidence between empirical and theoretical distributions of the dominating orientations in both species.  相似文献   

17.
The nature of the N2 effect for ICR-170, i.e., the greater mutagenic and lethal activities of this agent in the presence of N2 than O2, has been studied at the ad-3 region of Neurospora crassa. The characteristics of the N2 effect for ICR-170 were that (1) the N2 effect with ICR-170 was displayed in conidia when N2 was administered during, but not before or after, ICR-170 treatment, (2) the highly increased mutagenic and lethal activities of ICR-170 in the presence of N2 were due to an anoxic condition rather than to the presence of N2 per se, (3) the high killing activity of ICR-170 under N2 was due largely to increased cytoplasmic inactivation, (4) the N2 effect was a general phenomenon at the ad-3 region of N. crassa, and (5) the highly ICR-170-induced mutation in conidia under N2 was attributable to an actual enhancement in the mutagenic activity of ICR-170 rather than to selective killing. With regard to the mechanisms of the N2 effect with ICR-170, results indicate that this effect (1) was not due to more extracellular oxidative degradation of ICR-170 molecules in the presence of O2, or to a greater uptake of ICR-170 by conidia under N2, but (2) was due to the inhibition of conidial respiration under an anoxic environment.  相似文献   

18.
Fish gill morphology: inside out   总被引:13,自引:0,他引:13  
In this short review of fish gill morphology we cover some basic gross anatomy as well as in some more detail the microscopic anatomy of the branchial epithelia from representatives of the major extant groups of fishes (Agnathans, Elasmobranchs, and Teleosts). The agnathan hagfishes have primitive gill pouches, while the lampreys have arch-like gills similar to the higher fishes. In the lampreys and elasmobranchs, the gill filaments are supported by a complete interbranchial septum and water exits via external branchial slits or pores. In contrast, the teleost interbranchial septum is much reduced, leaving the ends of the filaments unattached, and the multiple gill openings are replaced by the single caudal opening of the operculum. The basic functional unit of the gill is the filament, which supports rows of plate-like lamellae. The lamellae are designed for gas exchange with a large surface area and a thin epithelium surrounding a well-vascularized core of pillar cell capillaries. The lamellae are positioned for the blood flow to be counter-current to the water flow over the gills. Despite marked differences in the gross anatomy of the gill among the various groups, the cellular constituents of the epithelium are remarkably similar. The lamellar gas-exchange surface is covered by squamous pavement cells, while large, mitochondria-rich, ionocytes and mucocytes are found in greatest frequency in the filament epithelium. Demands for ionoregulation can often upset this balance. There has been much study of the structure and function of the branchial mitochondria-rich cells. These cells are generally characterized by a high mitochondrial density and an amplification of the basolateral membrane through folding or the presence of an intracellular tubular system. Morphological subtypes of MRCs as well as some methods of MRC detection are discussed.  相似文献   

19.
Bioassay of Channa punctata (± 36 g) was carried out in acidic waters of different pH. A 96 h LC50, value was obtained at pH 5.3. Scanning electron microscopy of gills of C. punctata showed fusion of adjacent secondary lamellae. At this low pH, dissociation of epithelium of branchial arches and gill filaments take place. At 360 h the branchial epithelium ruptures developing lesions in the gills exposing the efferent filament vessels. At pH 6.6 the tips of adjacent filaments belonging to both oral and aboral hemibranchs fuse in blocks.  相似文献   

20.
The pattern of RNA expression of the murine Dlx-2 (Tes-1) homeobox gene is described in embryos ranging in age from E8.5 through E11.5. Dlx-2 is a vertebrate homologue of the Drosophila Distal-less (Dll) gene. Dll expression in the Drosophila embryo is principally limited to the primordia of the brain, head and limbs. Dlx-2 is also expressed principally in the primordia of the forebrain, head and limbs. Within these regions it is expressed in spatially restricted domains. These include two discontinuous regions of the forebrain (basal telencephalon and ventral diencephalon), the branchial arches, facial ectoderm, cranial ganglia and limb ectoderm. Several mouse and human disorders have phenotypes which potentially are the result of mutations in the Dlx genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号