首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We had been unsuccessful to amplify desired nucleotide sequences from various environmental DNA samples by using the inverse polymerase chain reaction (IPCR) technique, most probably because the copy numbers of target DNA sequences had been quite low. To enrich the target DNA sequences prior to IPCR, a rolling-circle amplification was used with a site-specific primer containing locked nucleic acids (LNAs). This pre-amplified IPCR (PAI-PCR) method increased the sensitivity of PCR almost 10 000 times compared with the standard IPCR in model experiments using Escherichia coli . We then applied the PAI-PCR method to isolate glycosyl hydrolase genes from DNAs extracted from vermiform appendixes of horses and termite guts. The flanking sequences of the target genes were amplified and cloned successfully using PAI-PCR, whereas standard IPCR resulted in no amplification.  相似文献   

2.
In situ hybridization (ISH) has proved to be an invaluable molecular tool in research and diagnosis to visualize nucleic acids in their cellular environment. However, its applicability can be limited by its restricted detection sensitivity. During the past 10 years, several strategies have been developed to improve the threshold levels of nucleic acid detection in situ by amplification of either target nucleic acid sequences before ISH (e.g., in situ PCR) or the detection signals after the hybridization procedures. Here we outline the principles of tyramide signal amplification using the catalyzed reporter deposition (CARD) technique, present practical suggestions to efficiently enhance the sensitivity of ISH with CARD, and discuss some applications and possible future directions of in situ nucleic acid detection using such an amplification strategy.  相似文献   

3.
The sensitivity, speed and convenience of chemiluminescent (CL) and bioluminescent (BL) immunoassays and probe assays have led to a diverse range of applications for these technologies, mainly in the clinical laboratory. These methods are now being explored by the food and pharmaceutical industries. Demanding detection limits and the complexity of sample preparation for food and pharmaceutical analyses present daunting challenges for the analyst. Immunoassay and nucleic acid amplification technologies have been applied to food testing, but these have mostly favoured non-luminescent endpoints. Food assays with CL or BL endpoints are now emerging, e.g., Clostridium botulinum type A detection using a CL immunosorbent assay; Salmonella and Zygosaccharomyces detection using a combination of PCR and CL detection. The analytical challenges posed by the pharmaceutical industry include testing for contaminants in raw materials and drug products, and drug discovery. The sensitivity and rapid signal acquisition characteristics of CL and BL are advantageous for the high throughput, massively parallel testing of micro-sized samples demanded in drug discovery. Current progress and the prospects for CL and BL immunoassay and nucleic acid technologies in this and other pharmaceutical and food applications is reviewed. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The quantitative immuno-PCR (qIPCR) technology combines the advantages of flexible and robust immunoassays with the exponential signal amplification power of PCR. The qIPCR allows one to detect antigens using specific antibodies labeled with double-stranded DNA. The label is used for signal generation by quantitative PCR. Because of the efficiency of nucleic acid amplification, qIPCR typically leads to a 10- to 1,000-fold increase in sensitivity compared to an analogous enzyme-amplified immunoassay. A standard protocol of a qIPCR assay to detect human interleukin 6 (IL-6) using a sandwich immunoassay combined with real-time PCR readout is described here. The protocol includes initial immobilization of the antigen, and coupling of this antigen with antibody-DNA conjugates is then carried out by (a) the stepwise assembly of biotinylated antibody, streptavidin and biotinylated DNA, (b) the use of a biotinylated antibody and an anti-biotin-DNA conjugate or (c) the employment of an anti-IL-6 antibody-DNA conjugate. Following the assembly of signal-generating immunocomplexes, real-time PCR is used to amplify and record the signal. Depending on the coupling strategy, the qIPCR assays require 4-7 h with only about 3 h hands-on-time. The use of qIPCR assays enables the detection of rare biomarkers in complex biological samples that are poorly accessible by conventional immunoassays. Therefore, qIPCR offers novel opportunities for the biomedical analysis of, for instance, neurodegenerative diseases and viral infections as well as new tools for the development of novel pharmaceuticals.  相似文献   

6.
Over the past 50 years the development of assays for the detection of protein analytes has been driven by continuing demands for higher levels of sensitivity and multiplexing. The result has been a progression of sandwich-type immunoassays, starting with simple radioisotopic, colorimetric, or fluorescent labeling systems to include various enzymatic or nanostructure-based signal amplification schemes, with a concomitant sensitivity increase of over 1 million fold. Multiplexing of samples and tests has been enabled by microplate and microarray platforms, respectively, or lately by various molecular barcoding systems. Two different platforms have emerged as the current front-runners by combining a nucleic acid amplification step with the standard two-sided immunoassay. In both, the captured protein analyte is replaced by a multiplicity of oligonucleotides that serve as surrogate targets. One of these platforms employs DNA or RNA polymerases for the amplification step, while detection is by fluorescence. The other is based on gold nanoparticles for both amplification as well as detection. The latter technology, now termed Biobarcode, is completely enzyme-free and offers potentially much higher multiplexing power.  相似文献   

7.
近年来,CRISPR/Cas系统已经成为转录调控和基因组编辑的重要工具。除了在基因编辑领域的贡献,CRISPR/Cas系统独特的靶核酸顺式切割和非特异性单链核酸反式切割能力,在开发核酸检测的新型生物传感器方面展现出巨大潜力。构建基于CRISPR/Cas系统高灵敏度生物传感器的关键通常依赖其与不同信号扩增策略,诸如核酸扩增技术或特定信号转导方法的结合。基于此,本文旨在通过介绍不同类型的CRISPR/Cas系统,全面概述基于该系统的核酸检测生物传感器的研究进展,并重点对结合核酸扩增技术(PCR、LAMP、RCA、RPA和EXPAR)、灵敏的信号转导方法(电化学和表面增强拉曼光谱)和特殊结构设计生物传感的三大类型信号放大策略的CRISPR/Cas生物传感器进行总结和评论。最后,本文对目前的挑战以及未来的前景进行展望。  相似文献   

8.
9.
10.
Nucleic acid hybridization: from research tool to routine diagnostic method   总被引:2,自引:0,他引:2  
The nucleic acid hybridization reaction is extremely specific and thus a valuable tool for the identification of genes or organism of interest. The increasing use of nucleic acid hybridization in applied fields like diagnostic medicine has led to the development of more convenient hybridization assays than those originally used in basic research. In conventional nucleic acid hybridization methods immobilized nucleic acids are detected on a filter by a radiolabelled probe. Sandwich hybridization is a simple test format for the analysis of unpurified biological material, but has the disadvantage of a slow reaction rate. Solution hybridization methods are fast and easy to perform provided that a method to separate the formed hybrids from the reaction mixture is available. In non-isotopic detection the nucleic acid probe is modified with a chemical group, which is identified with a labelled detector molecule after hybridization. The low sensitivity of detection is the main problem in nucleic acid hybridization methods. Procedures to amplify the detectable signal or the amount of detectable nucleic acid sequences are potential solutions to this problem. The new hybridization methods have successfully been used for some applications, but still need to be combined into well performing tests to be applicable to any desired purpose.  相似文献   

11.
A non-enzymatic approach to signal amplification has practical advantages over conventional target amplification methods. We have designed a simple, cost-efficient signal amplification system that can be used to enhance the detection of nucleic acids or protein. The signal amplification process requires initial capture of analyte by a specific probe, which, depending on the analyte, can be an oligomer or an antibody. Once the analyte is captured, amplification moieties are applied to significantly enhance the sensitivity of analyte detection. Nucleic acid amplification is typically greater than 1000-fold, increasing the sensitivity of target detection to less than 1 amol/100 microL. This amplification strategy presents a very flexible system with components that are easily altered to accommodate diverse assay requirements.  相似文献   

12.
While microarrays hold considerable promise in large-scale biology on account of their massively parallel analytical nature, there is a need for compatible signal amplification procedures to increase sensitivity without loss of multiplexing. Rolling circle amplification (RCA) is a molecular amplification method with the unique property of product localization. This report describes the application of RCA signal amplification for multiplexed, direct detection and quantitation of nucleic acid targets on planar glass and gel-coated microarrays. As few as 150 molecules bound to the surface of microarrays can be detected using RCA. Because of the linear kinetics of RCA, nucleic acid target molecules may be measured with a dynamic range of four orders of magnitude. Consequently, RCA is a promising technology for the direct measurement of nucleic acids on microarrays without the need for a potentially biasing preamplification step.  相似文献   

13.
In situ hybridization (ISH) is a powerful technique for localizing specific nucleic acid sequences (DNA, RNA) in microscopic preparations of tissues, cells, chromosomes, and linear DNA fibers. To date, a wide variety of research and diagnostic applications of ISH have been described, making the technique an integral part of studies concerning gene mapping, gene expression, RNA processing and transport, the three-dimensional organization of the nucleus, tumor genetics, microbial infections, and prenatal diagnosis. In this review, I first describe the ISH procedure in short and then focus on the currently available non-radioactive probe-labeling and cytochemical detection methodologies that are utilized to visualize one or multiple different nucleic acid targets in situ with different colors. Special emphasis is placed on the procedures applying fluorescence and brightfield microscopy, the simultaneous detection of nucleic acids and proteins by combined ISH and immunocytochemistry, and, in addition, on the recent progress that has been made with the introduction of signal amplification procedures to increase the detection sensitivity of ISH. Finally, a comparison of fluorescence, enzyme cytochemical, and colloidal gold silver probe detection systems will be presented, and possible future directions of in situ nucleic acid detection will be discussed. Accepted: 9 June 1999  相似文献   

14.
Nucleic acid diagnostics is dominated by fluorescence-based assays that use complex and expensive enzyme-based target or signal-amplification procedures. Many clinical diagnostic applications will require simpler, inexpensive assays that can be done in a screening mode. We have developed a 'spot-and-read' colorimetric detection method for identifying nucleic acid sequences based on the distance-dependent optical properties of gold nanoparticles. In this assay, nucleic acid targets are recognized by DNA-modified gold probes, which undergo a color change that is visually detectable when the solutions are spotted onto an illuminated glass waveguide. This scatter-based method enables detection of zeptomole quantities of nucleic acid targets without target or signal amplification when coupled to an improved hybridization method that facilitates probe-target binding in a homogeneous format. In comparison to a previously reported absorbance-based method, this method increases detection sensitivity by over four orders of magnitude. We have applied this method to the rapid detection of mecA in methicillin-resistant Staphylococcus aureus genomic DNA samples.  相似文献   

15.
The inability of surface plasmon resonance (SPR) spectroscopy to detect extremely small refractive index changes has hindered its applications in ultrasensitive DNA analysis. In this study we report a signal amplification strategy that uses DNA-templated polyaniline deposition, suitable for DNA hybridization analysis with charge neutral peptide nucleic acid (PNA) being probes. Under acidic conditions, protonated aniline monomers are adsorbed on DNA backbones through electrostatic interaction. The microenvironment provided by the DNA facilitates oxidative aniline polymerization initialized by H2O2 in the presence of horseradish peroxide. Under optimal conditions, the detection limit is lowered from 5 nM for conventional SPR detection to 0.1 pM. The significant sensitivity improvement is attributed to the in-situ polymer chain growth along DNA strands, which introduces drastic refractive index increases. This signal amplification approach does not involve secondary hybridization processes. The detection sensitivity obtained is much better than that of gold nanoparticle-based amplification involving a secondary hybridization process and labeled DNA detection probes.  相似文献   

16.
即时检测(point-of-care testing,POCT)是一种检测成本低、检测速度快、准确度高、能自我采样获得临床诊断结果的新型诊断技术。该技术在临床诊断、病情监控与疫情防控等领域发挥了重要作用。核酸适配体是一种能够特异性识别多种靶标的分子探针,具有易合成、批间差异小、易实现信号放大等突出优势,是生物医学传感器中重要的分子识别元件。本文概述了核酸适配体探针的现有筛选方法和进展,总结了核酸适配体POCT传感器信号放大策略,着重介绍了各类核酸适配体传感器在POCT领域的应用现状,并对核酸适配体POCT传感器的发展前景进行了展望。  相似文献   

17.
Immuno-PCR (IPCR) has been studied to increase the detection sensitivity of current enzyme-linked immuno-sorbent assays (ELISA) as a novel approach for the early detection of Rotavirus infection, a major source for serious diarrhoea for susceptible risk groups. IPCR utilizes specific antibody-DNA conjugates with subsequent amplification of the marker-DNA. An antibody-DNA conjugate specific for Rotavirus antigen VP6 was synthesized and used in combination with a commercially available Rotavirus-ELISA kit. IPCR was carried out using reagents and protocols of the standardized Imperacer system. Real-time PCR monitoring of the marker-DNA amplification was compared to endpoint quantification of amplified haptene-labeled PCR products, using a microtiterplate-based PCR-ELISA. In spiked calibration samples, as few as 100 virus particles/ml could be clearly detected using the IPCR method and either real-time or end-point quantification compared to about 100,000 virus particles/ml in ELISA. Rotavirus positive and negative stool samples were correctly identified by IPCR with a clear separation even of a 10,000-fold dilution of the positive stool samples from the negative control.  相似文献   

18.
Nucleic acid (NA) assays have been developed and commercialized for many sexually transmitted diseases (STDs). Solid phase, liquid phase or in situ hybridization of nucleic acids without amplification procedures have been successfully used for diagnosing Chlamydia trachomatis, Neisseria gonorrhoeae and human papillomaviruses. Tests which use amplification procedures have provided better sensitivity and specificity than traditional tests. With special temperatures and enzymes, the new tests are designed to amplify either the target nucleic acid or the probe after annealing to the target. A third approach uses signal amplification. This article discusses the technology, specimen requirements and the current status of NA assay performance for diagnosing STDs and HIV by traditional and non-invasive clinical specimens.  相似文献   

19.
Molecular beacons represent a new family of fluorescent probes for nucleic acids, and have found broad applications in recent years due to their unique advantages over traditional probes. Detection of nucleic acids using molecular beacons has been based on hybridization between target molecules and molecular beacons in a 1:1 stoichiometric ratio. The stoichiometric hybridization, however, puts an intrinsic limitation on detection sensitivity, because one target molecule converts only one beacon molecule to its fluorescent form. To increase the detection sensitivity, a conventional strategy has been target amplification through polymerase chain reaction. Instead of target amplification, here we introduce a scheme of signal amplification, nicking enzyme signal amplification, to increase the detection sensitivity of molecular beacons. The mechanism of the signal amplification lies in target-dependent cleavage of molecular beacons by a DNA nicking enzyme, through which one target DNA can open many beacon molecules, giving rise to amplification of fluorescent signal. Our results indicate that one target DNA leads to cleavage of hundreds of beacon molecules, increasing detection sensitivity by nearly three orders of magnitude. We designed two versions of signal amplification. The basic version, though simple, requires that nicking enzyme recognition sequence be present in the target DNA. The extended version allows detection of target of any sequence by incorporating rolling circle amplification. Moreover, the extended version provides one additional level of signal amplification, bringing the detection limit down to tens of femtomolar, nearly five orders of magnitude lower than that of conventional hybridization assay.  相似文献   

20.
Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method, which amplifies DNA with high specificity, sensitivity, rapidity and efficiency under isothermal conditions using a set of four specially designed primers and a Bst DNA polymerase with strand displacement activity. The basic principle, characteristics, development of LAMP and its applications are summarized in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号