首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《The Journal of cell biology》1990,111(5):2089-2096
During development of the rat central nervous system, neural cell adhesion molecule (NCAM) mRNAs containing in the extracellular domain a 30-bp alternative exon, here named VASE, replace RNAs that lack this exon. The presence of this alternative exon between previously described exons 7 and 8 changes the predicted loop structure of the derived polypeptide from one resembling an immunoglobulin constant region domain to one resembling an immunoglobulin variable domain. This change could have significant effects on NCAM polypeptide function and cell-cell interaction. In this report we test multiple rat tissues for the presence of additional alternative exons at this position and also examine the regulation of splicing of the previously described exon. To sensitively examine alternative splicing, polymerase chain reactions (PCRs) with primers flanking the exon 7/exon 8 alternative splicing site were performed. Four categories of RNA samples were tested for new exons: whole brain from embryonic day 11 to adult, specific brain regions dissected from adult brain, clonal lines of neural cells in vitro, and muscle cells and tissues cultured in vitro and obtained by dissection. Within the limits of the PCR methodology, no evidence for any alternative exon other than the previously identified VASE was obtained. The regulation of expression of this exon was found to be complex and tissue specific. Expression of the 30-bp exon in the heart and nervous system was found to be regulated independently; a significant proportion of embryonic day 15 heart NCAM mRNAs contain VASE while only a very small amount of day 15 nervous system mRNAs contain VASE. Some adult central nervous system regions, notably the olfactory bulb and the peripheral nervous system structures adrenal gland and dorsal root ganglia, express NCAM which contains very little VASE. VASE is undetectable in NCAM PCR products from the olfactory epithelium. Other nervous system regions express significant quantities of NCAM both with and without VASE. Clonal cell lines in culture generally expressed very little VASE. These results indicate that a single alternative exon, VASE, is found in NCAM immunoglobulin-like loop 4 and that distinct tissues and nervous system regions regulate expression of VASE independently both during development and in adult animals.  相似文献   

3.
Neural cell adhesion molecules (NCAMs) are cell surface glycoproteins that appear to mediate cell-cell adhesion. In vertebrates NCAMs exist in at least three different polypeptide forms of apparent molecular masses 180, 140, and 120 kD. The 180- and 140-kD forms span the plasma membrane whereas the 120-kD form lacks a transmembrane region. In this study, we report the isolation of NCAM clones from an adult rat brain cDNA library. Sequence analysis indicated that the longest isolate, pR18, contains a 2,574 nucleotide open reading frame flanked by 208 bases of 5' and 409 bases of 3' untranslated sequence. The predicted polypeptide encoded by clone pR18 contains a single membrane-spanning region and a small cytoplasmic domain (120 amino acids), suggesting that it codes for a full-length 140-kD NCAM form. In Northern analysis, probes derived from 5' sequences of pR18, which presumably code for extracellular portions of the molecule hybridized to five discrete mRNA size classes (7.4, 6.7, 5.2, 4.3, and 2.9 kb) in adult rat brain but not to liver or muscle RNA. However, the 5.2- and 2.9-kb mRNA size classes did not hybridize to either a large restriction fragment or three oligonucleotides derived from the putative transmembrane coding region and regions that lie 3' to it. The 3' probes did hybridize to the 7.4-, 6.7-, and 4.3-kb message size classes. These combined results indicate that clone pR18 is derived from either the 7.4-, 6.7-, or 4.3-kb adult rat brain RNA size class. Comparison with chicken and mouse NCAM cDNA sequences suggests that pR18 represents the amino acid coding region of the 6.7- or 4.3-kb mRNA. The isolation of pR18, the first cDNA that contains the complete coding sequence of an NCAM polypeptide, unambiguously demonstrates the predicted linear amino acid sequence of this probable rat 140-kD polypeptide. This cDNA also contains a 30-base pair segment not found in NCAM cDNAs isolated from other species. The significance of this segment and other structural features of the 140-kD form of NCAM can now be studied.  相似文献   

4.
5.
6.
7.
Previous studies of neural cell adhesion molecule (NCAM) cDNAs have revealed an alternatively spliced set of small exons (12A, 12B, 12C, and 12D) that encode a region in the extracellular portion of the molecule known as the muscle-specific domain (MSD). The entire MSD region can be expressed in skeletal muscle, heart, and skin; only exons 12A and 12D have been found in brain. These studies did not reveal which NCAM polypeptides contain the MSD region or the immunohistochemical distribution of these NCAM molecules. To address these questions, we prepared antibodies against the oligopeptides encoded by exons 12A and 12B and by exons 12C and 12D, and we used these antibodies to study the forms of NCAM containing the MSD region expressed during embryonic chicken heart development. These antibodies recognize certain forms of NCAM found in the heart, but they do not recognize brain NCAM. In the heart, each of the splice variants of NCAM (large cytoplasmic domain, small cytoplasmic domain, and small surface domain) that differ in their mode of attachment to the plasma membrane or in the size of their cytoplasmic domain is expressed in a form that contains and in a form that lacks the MSD region. No microheterogeneity is observed in the size of NCAM molecules containing the MSD region, even at the level of cyanogen bromide fragments, suggesting that exons 12A-D are expressed as a single unit. Depending on the site and the stage of development, the percent of NCAM molecules containing the MSD region can vary from nearly 0 to 100%. In general, this percentage increases during development. In immunohistochemical studies of hearts from stage 18 embryos, forms of NCAM containing the MSD region colocalized with Z discs. No other adhesion molecules were found in this distribution at this early stage of development. Studies on isolated cells in vitro demonstrate that the colocalization with Z discs of NCAM molecules containing the MSD region does not depend on cell-cell contact, and they raise the possibility that this form of NCAM is involved in cell-extracellular matrix interactions. The association of NCAM molecules containing the MSD region with Z discs suggests that this form of NCAM is involved in early myofibrillogenesis.  相似文献   

8.
9.
10.
Gene expression in rat brain   总被引:43,自引:2,他引:41       下载免费PDF全文
191 randomly selected cDNA clones prepared from rat brain cytoplasmic poly (A)+ RNA were screened by Northern blot hybridization to rat brain, liver and kidney RNA to determine the tissue distribution, abundance and size of the corresponding brain mRNA. 18% hybridized to mRNAs each present equally in the three tissues, 26% to mRNAs differentially expressed in the tissues, and 30% to mRNAs present only in the brain. An additional 26% of the clones failed to detect mRNA in the three tissues at an abundance level of about 0.01%, but did contain rat cDNA as demonstrated by Southern blotting; this class probably represents rare mRNAs expressed in only some brain cells. Therefore, most mRNA expressed in brain is either specific to brain or otherwise displays regulation. Rarer mRNA species tend to be larger than the more abundant species, and tend to be brain specific; the rarest, specific mRNAs average 5000 nucleotides in length. Ten percent of the clones hybridize to multiple mRNAs, some of which are expressed from small multigenic families. From these data we estimate that there are probably at most 30,000 distinct mRNA species expressed in the rat brain, the majority of which are uniquely expressed in the brain.  相似文献   

11.
The complete nucleotide sequence of the rat aldolase A isozyme gene, including the 5' and 3' flanking sequences, was determined. The gene comprises ten exons, spans 4827 base-pairs and occurs in a single copy per haploid rat genome. The genomic DNA sequence was compared with those of three species of rat aldolase A mRNA (mRNAs I, II and III) that have been found to differ from each other only in the 5' non-coding region and to be expressed tissue-specifically. It revealed that the first exon (exon M1) encodes the 5' non-coding sequence of mRNA I, while the second exon (exon AH1) encodes those of mRNAs II and III and the following eight exons (exons 2 to 9) are shared commonly by all the mRNA species. These results allowed us to conclude that mRNA I and mRNAs II, III were generated from a single aldolase A gene by alternative usage of exon M1 or exon AH1 in addition to exons 2 to 9. S1 nuclease mapping of the 5' ends of their precursor RNAs suggested that these three mRNA species were transcribed from three different initiation sites on the single gene.  相似文献   

12.
13.
14.
15.
16.
Recombinant DNA clones encoding the neurotensin/neuromedin N precursor protein have been isolated from both bovine hypothalamus cDNA and rat genomic libraries using a heterologous canine cDNA probe. Nucleotide sequence analysis of these clones and comparison with the previously determined canine sequence has revealed that 76% of the amino acid residues are conserved in all three species. The protein precursor sequences predicted from bovine hypothalamus and canine intestine cDNA clones vary at only 9 of 170 amino acid residues suggesting that within a species identical precursors are synthesized in both the central nervous system and intestine. The rat gene spans approximately 10.2 kilobases (kb) and is divided into four exons by three introns. The neurotensin and neuromedin N coding domains are tandemly positioned on exon 4. RNA blot analysis has revealed that the rat gene is transcribed to yield two distinct mRNAs, 1.0 and 1.5 kb in size, in all gastrointestinal and all neural tissues examined except the cerebellum. There is a striking variation in the relative levels of these two mRNAs between brain and intestine. The smaller 1.0-kb mRNA greatly predominates in intestine while both mRNA species are nearly equally abundant in hypothalamus, brain stem, and cortex. Sequence comparisons and RNA blot analysis indicate that these two mRNAs result from the differential utilization of two consensus poly(A) addition signals and differ in the extent of their 3' untranslated regions. The relative combined levels of the mRNAs in various brain and intestine regions correspond roughly with the relative levels of immunologically detectable neurotensin except in the cerebral cortex where mRNA levels are 6 times higher than anticipated.  相似文献   

17.
Antisense oligonucleotides are an attractive therapeutic option to modulate specific gene expression. However, not all antisense oligonucleotides are effective in inhibiting gene expression, and currently very few methods exist for selecting the few effective ones from all candidate oligonucleotides. The lack of quantitative methods to rapidly assess the efficacy of antisense oligonucleotides also contributes to the difficulty of discovering potent and specific antisense oligonucleotides. We have previously reported the development of a prediction algorithm for identifying high affinity antisense oligonucleotides based on mRNA-oligonucleotide hybridization. In this study, we report the antisense activity of these rationally selected oligonucleotides against three model target mRNAs (human lactate dehydrogenase A and B and rat gp130) in cell culture. The effectiveness of oligonucleotides was evaluated by a kinetic PCR technique, which allows quantitative evaluation of mRNA levels and thus provides a measure of antisense-mediated decreases in target mRNA, as occurs through RNase H recruitment. Antisense oligonucleotides that were predicted to have high affinity for their target proved effective in almost all cases, including tests against three different targets in two cell types with phosphodiester and phosphorothioate oligonucleotide chemistries. This approach may aid the development of antisense oligonucleotides for a variety of applications.  相似文献   

18.
Sequence-specific hybridization of antisense and antigene agent to the target nucleic acid is an important therapeutic strategy to modulate gene expression. However, efficiency of such agents falls due to inherent intramolecular-secondary-structures present in the target that pose competition to intermolecular hybridization by complementary antisense/antigene agent. Performance of these agents can be improved by employing structurally modified complementary oligonucleotides that efficiently hybridize to the target and force it to transit from an intramolecular-structured-state to an intermolecular-duplex state. In this study, the potential of variably substituted locked nucleic acid-modified oligonucleotides (8mer) to hybridize and disrupt highly stable, secondary structure of nucleic acid has been biophysically characterized and compared with the conventionally used unmodified DNA oligonucleotides. The target here is a stem-loop hairpin oligonucleotide-a structure commonly present in most structured-nucleic acids and known to exhibit an array of biological functions. Using fluorescence-based studies and EMSA we prove that LNA-modified oligonucleotides hybridize to the target hairpin with higher binding affinity even at lower concentration and subsequently, force it to assume a duplex conformation. LNA-modified oligonucleotides may thus, prove as potential therapeutic candidates to manipulate gene expression by disruption of biologically relevant nucleic acid secondary structure.  相似文献   

19.
20.
The sequence of the mRNAs which encode the alpha-subunits of the signal-transducing G-proteins Gs, Go and two forms of Gi (termed Gi1 and Gi2) have recently been reported. Based on rat sequences we prepared oligodeoxynucleotide probes for measurement of these mRNAs in rat brain and peripheral tissues. The relative abundance of these mRNA species in brain was Gs greater than Go approximately Gi2 greater than Gi1. The Gs and Gi2 mRNAs had somewhat lower levels in heart, kidney and liver than in brain, and Go and Gi1 mRNAs were not detected in the peripheral tissues. Using in situ hybridization we localized each of these mRNAs within slices of the rat brain. The patterns of distribution of Gs and Gi2 mRNA were very similar, but very different from that of Go and Gi1 mRNA. These data illustrate that receptor-effector coupling G-proteins are regionally specialized in their expression. This regional specialization may reflect a selective coupling of individual G-proteins with the various neurotransmitter receptors and effector pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号