首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amplified fragment length polymorphism (AFLP) was conducted on a set of 92 Nicotiana tabacum L. accessions from diverse types (flue-cured, dark air-cured, burley, oriental, and cigar wrapper) and breeding origins to identify markers associated with disease resistances. Eleven primer combinations were required to identify 33 polymorphic fragments. This allowed the identification of 92% of these accessions, and yielded sufficient information for building a neighbor joining tree. Clusters of accessions with common traits or breeding origins were observed. An important part of this polymorphism could be related to interspecific introgressions from other Nicotiana species, performed during the breeding history of N. tabacum to confer resistance to pathogens. Seven fragments were associated with three different resistances: two for the blue-mold (Peronospora tabacina Adam) resistance derived from Nicotiana debneyi Domin, two for the Va gene (Potato Virus Y susceptibility), and three for the black root rot (Chalara elegans) resistance of N. debneyi origin. Some of these markers were converted into sequence characterized amplified region markers, and validated on recombinant inbred lines or doubled-haploid lines.  相似文献   

2.
Summary Lines isogenic or near isogenic for traits other than resistance to black root rot from Nicotiana debneyi were developed in eight cultivar backgrounds of burley tobacco (N. tabacum L.). For each cultivar background, a resistant and susceptible selection from the seventh backcross generation plus the recurrent parental cultivar were evaluated for ten agronomic and chemical traits. Resistant selections were statistically different from the susceptible entries for days to flower, total nitrogen content, and total alkaloid content. Also, resistant selections were consistently lower in yield, but the differences were statistically nonsignificant. Resistant selections were also taller in three families and in two families the resistant selections had wider leaves. Linkage of genetic material from N. debneyi with the resistance factor was suggested as the possible reason for differences between resistant and susceptible selections.  相似文献   

3.
Black root rot (BRR), a disease caused by the hemibiotrophic fungus Thielaviopsis basicola, seriously compromises yield and leaf quality in tobacco (Nicotiana tabacum). Full resistance to black root rot, conferred by the resistance to BRR 1 (RBRR1) locus from Nicotiana debneyi Domin, was transferred to a burley tobacco cultivar through interspecific hybridization. Some undesirable traits potentially caused by linkage drag restrict wider application of RBRR1 in flue-cured tobacco. Therefore, user-friendly molecular markers are needed to assist selection for resistance to black root rot and to break the unfavorable linkage. Genotyping by sequencing (GBS) is a rapid and robust approach for reduced representation sequencing of multiplexed genomic DNA samples that combines genome-wide molecular marker discovery with genotyping. In the present study, we used GBS to identify single-nucleotide polymorphisms (SNPs) linked to the RBRR1 locus, and PCR-based assays for detection of these SNPs were also developed. Sequence analysis of the SNP markers suggested that RBRR1 is located on chromosome 17, providing a basis for map-based cloning of this valuable gene. Co-dominant CAPS markers that co-segregate with the disease-resistant phenotype offer user-friendly tools for tobacco breeding and variety improvement. Furthermore, tested with diverse N. tabacum germplasm, SS192650 displayed 100% selection accuracy for resistance to BRR, suggesting that this marker can be used in diverse tobacco populations.  相似文献   

4.
Summary A simple, yet effective selection system was used to produce fertile somatic hybrids betweenNicotiana tabacum andN. debneyi. This approach utilized transgenic antibiotic-resistantN. tabacum andN. Debneyi as donor plants for mesophyll protoplast fusions. Thirteen somatic hybrid plants were regenerated from calli capable of growth on medium containing both antibiotics. The majority of the hybrids displayed a range of leaf and floral morphologies and growth habits that were intermediate to those of the parental species, and had chromosome numbers varying from amphidiploid (2n = 96) to hypoaneuploid (2n = 60). Isoenzyme and RFLP analysis demonstrated the presence and expression of nuclear genes from both parents in all of the hybrids. Most plants are fully fertile. Thus, these plants differ from the malesterile tobacco cybrids and alloplasmic lines produced by transferring theN. debneyi cytoplasm to tobacco. A nonrandom pattern of cytoplasmic segregation in the fusion products occurred with a bias towards the presence ofN. debneyi cp and mtDNA. Evidence for the presence of rearranged or recombinant cp and mtDNA in some of the hybrids was obtained. The somatic hybrids were successfully backcrossed to theN. tabacum parent and are now being tested for immunity to black root rot, a trait specific toN. debneyi, but not existent in theN. tabacum parental line.  相似文献   

5.
ABamHI family of highly repeated DNA sequences of theNicotiana tabacum nuclear genome, denoted as a HRS60-family, was recently isolated. It comprises about 2% of the tobacco nuclear genome. Monomeric units are 182–184 bp long. Members of the HRS60-family isolated till now are closely related. DNA-DNA hybridization experiments with DNA of the two tobacco progenitors,N. tomentosiformis andN. sylvestris, revealed that the HRS60-family was present in many copies inN. sylvestris, the amount being about 1.7 times that inN. tabacum. InN. tomentosiformis as well as in some other species of the genusNicotiana, the HRS60-family is present in a small amount. Sequences related to the HRS60-family were revealed using DNA-DNA hybridization at low stringency. With respect to quantity, the HRS60-family could be considered as a species-specific DNA repeat which may be a useful genetic marker in genetic manipulations withN. tabacum.  相似文献   

6.
Summary Variation in mitochondrial protein synthesis and genome organization was investigated. Three different alloplasmic cytoplasmic male-sterile Nicotiana tabacum cultivars, carrying N. repanda, N. suaveolens or N. debneyi cytoplasm, were analysed together with corresponding male-fertile parental and restored material. Although several differences were detected in the proteins synthesized by isolated mitochondria from the male-sterile and male-fertile plants, most of these were related to the origin of the mitochondria. However, a 23 kD protein was synthesized in the male-sterile cultivar carrying N. debneyi mitochondria, but not in other lines containing this cytoplasm. This protein was also present in the male-fertile parent containing N. tabacum mitochondria. Only the enhanced production of a 30 kD protein in the lines carrying mitochondria from N. repanda or N. debneyi was exclusively correlated with CMS. This protein was not present in any of the corresponding male-fertile parental and restored lines. Restriction enzyme analysis of mitochondrial DNA revealed a difference in abundance of a 5.6 kb XhoI fragment between lines containing N. debneyi mitochondria. No rearrangements of mitochondrial DNA was found between male-fertile and male-sterile lines carrying N. repanda or N. suaveolens cytoplasm. These results might indicate that CMS in alloplasmic Nicotiana cultivars is caused by alterations in the expression of mitochondrial genes, rather than by induced changes in the genome.  相似文献   

7.
In order to investigate possible interactions between parental genomes in the composite genome of Nicotiana tabacum we have analyzed the organization of telomeric (TTTAGGG)n and ribosomal gene (rDNA) repeats in the progenitor genomes Nicotiana sylvestris and Nicotiana tomentosiformis or Nicotiana otophora. Telomeric arrays in the Nicotiana species tested are heterogeneous in length ranging from 20 to 200 kb in N. sylvestris, from 20 to 50 kb in N. tomentosiformis, from 15 to 100kb in N. otophora, and from 40 to 160kb in N. tabacum. The patterns of rDNA repeats (18S, 5.8S, 25S RNA) appeared to be highly homogeneous and speciesspecific; no parental rDNA units corresponding to N. sylvestris, N. tomentosiformis or N. otophora were found in the genome of N. tabacum by Southern hybridization. The results provide evidence for a species-specific evolution of telomeric and ribosomal repeats in the tobacco composite genome.  相似文献   

8.
LTR-retrotransposons contribute substantially to the structural diversity of plant genomes. Recent models of genome evolution suggest that retrotransposon amplification is offset by removal of retrotransposon sequences, leading to a turnover of retrotransposon populations. While bursts of amplification have been documented, it is not known whether removal of retrotransposon sequences occurs continuously, or is triggered by specific stimuli over short evolutionary periods. In this work, we have characterized the evolutionary dynamics of four populations of copia-type retrotransposons in allotetraploid tobacco (Nicotiana tabacum) and its two diploid progenitors Nicotiana sylvestris and Nicotiana tomentosiformis. We have used SSAP (Sequence-Specific Amplification Polymorphism) to evaluate the contribution retrotransposons have made to the diversity of tobacco and its diploid progenitor species, to quantify the contribution each diploid progenitor has made to tobacco's retrotransposon populations, and to estimate losses or amplifications of retrotransposon sequences subsequent to tobacco's formation. Our results show that the tobacco genome derives from a turnover of retrotransposon sequences with removals concomitant with new insertions. We have detected unique behaviour specific to each retrotransposon population, with differences likely reflecting distinct evolutionary histories and activities of particular elements. Our results indicate that the retrotransposon content of a given plant species is strongly influenced by the host evolutionary history, with periods of rapid turnover of retrotransposon sequences stimulated by allopolyploidy.  相似文献   

9.
10.
Nicotiana section Suaveolentes is an almost all‐Australian clade of allopolyploid tobacco species including the important plant model Nicotiana benthamiana. The homology relationships of this clade and its formation are not completely understood. To address this gap, we assessed phylogenies of all individual genes of N. benthamiana and the well studied N. tabacum (section Nicotiana) and their homologues in six diploid Nicotiana species. We generated sets of 44 424 and 65 457 phylogenetic trees of N. benthamiana and N. tabacum genes, respectively, each collectively called a phylome. Members of Nicotiana sections Noctiflorae and Sylvestres were represented as the species closest to N. benthamiana in most of the gene trees. Analyzing the gene trees of the phylome we: (i) dated the hybridization event giving rise to N. benthamiana to 4–5 MyA, and (ii) separated the subgenomes. We assigned 1.42 Gbp of the genome sequence to section Noctiflorae and 0.97 Gbp to section Sylvestres based on phylome analysis. In contrast, read mapping of the donor species did not succeed in separating the subgenomes of N. benthamiana. We show that the maternal progenitor of N. benthamiana was a member of section Noctiflorae, and confirm a member of section Sylvestres as paternal subgenome donor. We also demonstrate that the advanced stage of long‐term genome diploidization in N. benthamiana is reflected in its subgenome organization. Taken together, our results underscore the usefulness of phylome analysis for subgenome characterization in hybrid species.  相似文献   

11.
Using single-copy conserved ortholog set (COSII) and simple sequence repeat (SSR) markers, we have constructed two genetic maps for diploid Nicotiana species, N. tomentosiformis and N. acuminata, respectively. N. acuminata is phylogenetically closer to N. sylvestris than to N. tomentosiformis, the latter two of which are thought to contribute the S-genome and T-genome, respectively, to the allotetraploid tobacco (N. tabacum L., 2n = 48). A comparison of the two maps revealed a minimum of seven inversions and one translocation subsequent to the divergence of these two diploid species. Further, comparing the diploid maps with a dense tobacco map revealed that the tobacco genome experienced chromosomal rearrangements more frequently than its diploid relatives, supporting the notion of accelerated genome evolution in allotetraploids. Mapped COSII markers permitted the investigation of Nicotiana–tomato syntenic relationships. A minimum of 3 (and up to 10) inversions and 11 reciprocal translocations differentiate the tomato genome from that of the last common ancestor of N. tomentosiformis and N. acuminata. Nevertheless, the marker/gene order is well preserved in 25 conserved syntenic segments. Molecular dating based on COSII sequences suggested that tobacco was formed 1.0MYA or later. In conclusion, these COSII and SSR markers link the cultivated tobacco map to those of wild diploid Nicotiana species and tomato, thus providing a platform for cross-reference of genetic and genomic information among them as well as other solanaceous species including potato, eggplant, pepper and the closely allied coffee (Rubiaceae). Therefore they will facilitate genetic research in the genus Nicotiana.  相似文献   

12.
A distinct endogenous pararetrovirus (EPRV) family corresponding to a previously unknown virus has been identified in the genome of Nicotiana tomentosiformis, a diploid ancestor of allotetraploid tobacco (Nicotiana tabacum). The putative virus giving rise to N. tomentosiformis EPRVs (NtoEPRVs) is most similar to tobacco vein clearing virus, an episomal form of a normally silent EPRV family in Nicotiana glutinosa; it is also related to a putative virus giving rise to the NsEPRV family in Nicotiana sylvestris (the second diploid progenitor of tobacco) and in the N. sylvestris fraction of the tobacco genome. The copy number of NtoEPRVs is significantly higher in N. tomentosiformis than in tobacco. This suggests that after the polyploidization event, many copies were lost from the polyploid genome or were accumulated specifically in the diploid genome. By contrast, the copy number of NsEPRVs has remained constant in N. sylvestris and tobacco, indicating that changes have occurred preferentially in the NtoEPRV family during evolution of the three Nicotiana species. NtoEPRVs are often flanked by Gypsy retrotransposon-containing plant DNA. Although the mechanisms of NtoEPRV integration, accumulation, and/or elimination are unknown, these processes are possibly linked to retrotransposon activity.  相似文献   

13.
The aim of this work was to assess the responses of seedlings of five species of Nicotiana genus to red and far red radiation. N. acuminata exhibits positive photoblastic behaviour and germination was completely inhibited under far red and darkness. In N. glauca germination was reduced under far red and darkness, but the other species showed neutral behaviour. The hypocotyl elongation was inhibited in N. glauca and N. tabacum under white and far red radiation. In N. langsdorffii and N. debneyi hypocotyl was elongated under far red radiation. Only in N. acuminata red radiation promote greater hypocotyl elongation than dark condition. On the phylogenetic tree obtained from restriction analysis N. glauca and N. acuminata are grouped in one branch, while the other species, N. langsdorffii, N. debneyi and N. tabacum, are grouped in the other branch cluster. Moreover, the N. debneyi behaviours under different radiation treatments were similar to those of N. tabacum. These two species are allopolyploid members of the genus Nicotiana, as also was confirmed by this study. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.

Background and Aims

The genus Nicotiana includes diploid and tetraploid species, with complementary ecological, agronomic and commercial characteristics. The species are of economic value for tobacco, as ornamentals, and for secondary plant-product biosynthesis. They show substantial differences in disease resistance because of their range of secondary products. In the last decade, sexual hybridization and transgenic technologies have tended to eclipse protoplast fusion for gene transfer. Somatic hybridization was exploited in the present investigation to generate a new hybrid combination involving two sexually incompatible tetraploid species. The somatic hybrid plants were characterized using molecular, molecular cytogenetic and phenotypic approaches.

Methods

Mesophyll protoplasts of the wild fungus-resistant species N. debneyi (2n = 4x = 48) were electrofused with those of the ornamental interspecific sexual hybrid N. × sanderae (2n = 2x = 18). From 1570 protoplast-derived cell colonies selected manually in five experiments, 580 tissues were sub-cultured to shoot regeneration medium. Regenerated plants were transferred to the glasshouse and screened for their morphology, chromosomal composition and disease resistance.

Key Results

Eighty-nine regenerated plants flowered; five were confirmed as somatic hybrids by their intermediate morphology compared with parental plants, cytological constitution and DNA-marker analysis. Somatic hybrid plants had chromosome complements of 60 or 62. Chromosomes were identified to parental genomes by genomic in situ hybridization and included all 18 chromosomes from N. × sanderae, and 42 or 44 chromosomes from N. debneyi. Four or six chromosomes of one ancestral genome of N. debneyi were eliminated during culture of electrofusion-treated protoplasts and plant regeneration. Both chloroplasts and mitochondria of the somatic hybrid plants were probably derived from N. debneyi. All somatic hybrid plants were fertile. In contrast to parental plants of N. × sanderae, the seed progeny of somatic hybrid plants were resistant to infection by Peronospora tabacina, a trait introgressed from the wild parent, N. debneyi.

Conclusions

Sexual incompatibility between N. × sanderae and N. debneyi was circumvented by somatic hybridization involving protoplast fusion. Asymmetrical nuclear hybridity was seen in the hybrids with loss of chromosomes, although importantly, somatic hybrids were fertile and stable. Expression of fungal resistance makes these somatic hybrids extremely valuable germplasm in future breeding programmes in ornamental tobacco.  相似文献   

15.
The high disease resistance of the amphidiploid hybrid of Nicotiana glutinosa x Nicotiana debneyi is associated with high constitutive levels of two phenolic compounds as analysed by high-performance liquid chromatography. The structures of these two compounds were elucidated by means of gas chromatography-tandem mass spectrometry, fluorescence- and light-spectrophotometry to be those of scopolin and scopoletin. They reached levels of 4 nmol·(g FW)?1 and 35 nmol·(g FW)?1, respectively, in leaf tissues of the hybrid, about 10–50 times the amount found in the parental species. Scopoletin showed a direct antimicrobial activity against Cercospora nicotianae, Phytophthora parasitica var. nicotianae, Pseudomonas syringae pvs. tabaci and syringae and tobacco mosaic virus when added to synthetic growth media, mixed with the inoculum or sprayed onto tobacco plants prior to inoculation. We postulate that the high amount of toxic phenolics in the leaves of the hybrid N. glutinosa x N. debneyi contributes to its high disease resistance.  相似文献   

16.
Changes in gene expression were studied during the establishment of arbuscular mycorrhizal symbiosis in tobacco roots from an amphidiploid hybrid Nicotiana glutinosa x N. debneyi. Polypeptide patterns from control roots and from roots infected by Glomus mosseae or G. intraradices were resolved by two-dimensional polyacrylamide gel electrophoresis and followed in a time-course analysis. Arbuscular mycorrhizal infection led to significant modifications in polypeptide patterns with: (a) decreased amounts of some polypeptides, (b) increased accumulation of others, and (c) appearance of newly-induced polypeptides. Comparisons made during infection development by the two Glomus species demonstrated that protein modifications changed in relation to the mycorrhizal state of the tobacco roots.  相似文献   

17.
Tobacco (Nicotiana tabacum) is an important cash crop and an ideal experimental system for studies on plant–pathogen interaction. The sequenced tobacco genome provides an opportunity for examining resistance gene homologs (RGHs) in the tobacco genome. Thirty nucleotide-binding site-type RGHs were annotated from genomic data, and another 281 putative RGHs were identified via PCR amplification from wild and cultivated tobacco. The newly identified RGHs are similar to other known RGHs, and some were categorized into new groups or branches that are different from known Nicotiana R genes or RGHs. Of the 281RGHs, 146 were identified from a single tobacco genome. We did not find any polymorphism at the RGHs in cultivated accessions, implying that strong domestication selection and/or demographic effects might have caused a sharp reduction in nucleotide diversity. Three positive selection sites were found in several RGH groups, while purifying selection is pervasive in the RGH family. Our results provide a primary RGH pool and several positively selected sites for the further functional validation of resistance genes in tobacco.  相似文献   

18.
A series of experiments are presented that have been performed to observe the interactions between Agrobacterium tumefaciens strains mutated in the T-DNA genes involved in indoleacetic acid and cytokinin biosynthesis and several Nicotiana species and hybrids. Infections were induced on leaf cuttings of Nicotiana debneyi, N. knightiana, N. clevelandii, N. bigelovii var bigelovii, N. bigelovii var quadrivalvis, N. glauca, N. langsdorffii, the amphidiploid tumorous hybrid N. glauca × N. langsdorffii, and a nontumorous mutant of it. The effect of deletions of the Ti plasmid varied according to plant genotype. Insertion mutants in iaaM and iaaH suppressed tumor formation in N. langsdorffii, reduced it in N. bigeloviivar quadrivalvis, had no effect in N. glauca and the two amphidiploid hybrids, and promoted tumorigenesis when compared to the wild-type Agrobacterium strain B6S3 in N. bigelovii N. debneyi, and N. knightiana. The same mutations induced shoot formation in N. glauca, increased it in N. debneyi, and suppressed root formation in N. knightiana. On the other hand, an insertion mutation of the isopentenyl transferase gene (ipt-) had no effect in N. bigelovii var quadrivalvis, N. debneyi, the tumorous hybrid, suppressed tumor formation in N. langsdorffii, and inhibited it in N. glauca, the nontumorous hybrid, N. bigelovii var bigelovii, and N. knightiana. Insertion in ipt suppressed shoot formation in the nontumorous hybrid and inhibited it in the nontumorous amphidiploid and N. debneyi, while promoting root formation in N. glauca and N. debneyi. The suggestion of the existence of specific hormone equilibria necessary for the shift to each morphogenetic pattern was supported by experiments with exogenous hormone treatments of three genotypes (N. glauca, N. langsdorffii, and the nontumorous N. glauca × N. langsdorffii).  相似文献   

19.
Physical mapping of plastid DNA variation among eleven Nicotiana species   总被引:1,自引:0,他引:1  
Summary Plastid DNA of seven American and four Australian species of the genus Nicotiana was examined by restriction endonuclease analysis using the enzymes Sal I, Bgl I, Pst I, Kpn I, Xho I, Pvu II and Eco RI. These endonucleases collectively distinguish more than 120 sites on N. tabacum plastid DNA. The DNAs of all ten species exhibited restriction patterns distinguishable from those of N. tabacum for at least one of the enzymes used. All distinctive sites were physically mapped taking advantage of the restriction cleavage site map available for plastid DNA from Nicotiana tabacum (Seyer et al. 1981). This map was extended for the restriction endonucleases Pst I and Kpn I. In spite of variation in detail, the overall fragment order was found to be the same for plastid DNA from the eleven Nicotiana species. Most of the DNA changes resulted from small insertions/deletions and, possibly, inversions. They are located within seven regions scattered along the plastid chromosome. The divergence pattern of the Nicotiana plastid chromosomes was strikingly similar to that found in the genus Oenothera subsection Euoenothera (Gordon et al. 1982). The possible role of replication as a factor in the evolution of divergence patterns is discussed. The restriction patterns of plastid DNA from species within a continent resembled each other with one exception in each instance. The American species N. repanda showed patterns similar to those of most Australian species, and those of the Australian species N. debneyi resembled those of most American species.Abbreviations ims isonuclear male sterile - ptDNA plastid chloroplast DNA - Rubisco ribulosebisphosphate carboxylase/oxygenase - kbp kilobase pairs - LSU large subunit of Rubisco  相似文献   

20.

Background  

Tnt1 was the first active plant retrotransposon identified in tobacco after nitrate reductase gene disruption. The Tnt1 superfamily comprises elements from Nicotiana (Tnt1 and Tto1) and Lycopersicon (Retrolyc1 and Tlc1) species. The study presented here was conducted to characterise Tnt1-related sequences in 20 wild species of Solanum and five cultivars of Solanum tuberosum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号