首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 442 毫秒
1.
Aim We used mitochondrial DNA sequence data to reconstruct the phylogeny of a large clade of tanagers (Aves: Thraupini). We used the phylogeny of this Neotropical bird group to identify areas of vicariance, reconstruct ancestral zoogeographical areas and elevational distributions, and to investigate the correspondence of geological events to speciation events. Location The species investigated are found in 18 of the 22 zoogeographical regions of South America, Central America and the Caribbean islands; therefore, we were able to use the phylogeny to address the biogeographical history of the entire region. Methods Molecular sequence data were gathered from two mitochondrial markers (cytochrome b and ND2) and analysed using Bayesian and maximum‐likelihood approaches. Dispersal–vicariance analysis (DIVA) was used to reconstruct zoogeographical areas and elevational distributions. A Bayesian framework was also used to address changes in elevation during the evolutionary history of the group. Results Our phylogeny was similar to previous tanager phylogenies constructed using fewer species; however, we identified three genera that are not monophyletic and uncovered high levels of sequence divergence within some species. DIVA identified early diverging nodes as having a Northern Andean distribution, and the most recent common ancestor of the species included in this study occurred at high elevations. Most speciation events occurred either within highland areas or within lowland areas, with few exchanges occurring between the highlands and lowlands. The Northern Andes has been a source for lineages in other regions, with more dispersals out of this area relative to dispersals into this area. Most of the dispersals out of the Northern Andes were dispersals into the Central Andes; however, a few key dispersal events were identified out of the Andes and into other zoogeographical regions. Main conclusions The timing of diversification of these tanagers correlates well with the main uplift of the Northern Andes, with the highest rate of speciation occurring during this timeframe. Central American tanagers included in this study originated from South American lineages, and the timing of their dispersal into Central America coincides with or post‐dates the completion of the Panamanian isthmus.  相似文献   

2.
Viviparity is a remarkable feature in squamate sauropsids and it has evolved multiple times in parallel with the formation of a placenta. One example of this repeated evolution of viviparity and placentation occurs in the species‐rich South American genus Liolaemus with at least six independent origins of viviparity. However, evolutionary studies of placentation in this genus are limited by a lack of data on placental morphology. The aim of this study is to describe and compare the microanatomy and vessel diameter (Dv, a function of blood flow) of the placenta using scanning electron microscopy (SEM) and confocal laser scanning microscopy (cLSM) in two sympatric Andean viviparous but highly divergent species, Liolaemus robustus and Liolaemus walkeri. We found interspecific differences in cell types in the chorion, allantois, and omphalopleure that may be explained by divergent phylogenetic history. Time elapsed since divergence may also explain the pronounced interspecific differences in vessel diameter, and within each species, there are strong differences in Dv between tissue locations. Both species show features to improve gas exchange in the chorioallantoic placenta including absence of eggshell, large Dv in the allantois (L. robustus) or embryonic side of the uterus (L. walkeri), and when present, microvillous cells in the allantois (L. walkeri). Both species also show features that suggest transfer of nutrients or water in the omphaloplacenta, including an almost complete reduction of the eggshell, secretive material (L. robustus), or vesicles (L. walkeri) on cell surface uterus, and when present specialized cells in the omphalopleure (L. walkeri). No statistical differences in Dv were found among stages 32–39 in each species, suggesting that a different mechanism, other than enhanced blood flow, might satisfy the increased oxygen demand of the developing embryos in the hypoxic environments of the high Andes. J. Morphol. 276:1205–1217, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Most Neotropical lowland forest taxa occur exclusively on one side of the Andes despite the availability of appropriate habitat on both sides. Almost all molecular phylogenies and phylogenetic analyses of species assemblages (i.e. area cladograms) have supported the hypothesis that Andean uplift during the Late Pliocene created a vicariant barrier affecting lowland lineages in the region. However, a few widespread plant and animal species occurring in lowland forests on both sides of the Andes challenge the generality of this hypothesis. To understand the role of the Andes in the history of such organisms, we reconstructed the phylogeographic history of a widespread Neotropical flycatcher (Mionectes oleagineus) in the context of the other four species in the genus. A molecular phylogeny based on nuclear and mitochondrial sequences unambiguously showed an early basal split between montane and lowland Mionectes. The phylogeographic reconstruction of lowland taxa revealed a complex history, with multiple cases in which geographically proximate populations do not represent sister lineages. Specifically, three populations of M. oleagineus west of the Andes do not comprise a monophyletic clade; instead, each represents an independent lineage with origins east of the Andes. Divergence time estimates suggest that at least two cross-Andean dispersal events post-date Andean uplift.  相似文献   

4.
Hoplocercine lizards form a clade of 11 currently recognized species traditionally placed in three genera (Enyalioides, Hoplocercus, and Morunasaurus) that occur in the lowlands on both sides of the Andes between Panama and the Brazilian Cerrado. We analyze 11 mitochondrial and two nuclear loci using probabilistic methods and different partitioning strategies to (1) infer the phylogenetic relationships among species of Hoplocercinae, (2) examine amounts of inter- and intraspecific sequence divergence, (3) address monophyly of four species, (4) test previous phylogenetic hypotheses, and (5) estimate divergence times. Our preferred hypothesis places H. spinosus as the sister taxon to all other species of hoplocercines, with M. annularis nested within Enyalioides. Species with multiple samples are monophyletic except for Enyalioides oshaughnessyi, which is paraphyletic relative to an undescribed species of Enyalioides. All previously published phylogenetic hypotheses for hoplocercines are rejected. Monophyly of Enyalioides cannot be rejected and, consequently, the position of Morunasaurus remains unclear. The most recent common ancestor of Hoplocercinae probably occurred east of the Andes; western taxa included in our analyses originated from at least two separate colonizations whether pre- or post-dating vicariance resulting from uplift of the Andes.  相似文献   

5.
Aim The lizard genus Proctoporus Tschudi, 1845 was used as a model to test the South‐to‐North Speciation Hypothesis (SNSH) for species groups occurring in the Andes Mountains of South America. This hypothesis proposes that speciation of high Andean taxa followed a south‐to‐north pattern, generally coinciding with the progression of final uplift of the Andes. According to SNSH, a phylogenetic hypothesis of relationships of a taxonomic group occurring in the high Andes would show a branching pattern in which the southernmost species diverged first, followed by the more northern species, and so on in a northerly pattern. Location The central and northern Andes Mountains in South America. Methods A phylogenetic hypothesis was reconstructed for all species of the lizard genus Proctoporus by examining the external morphology of 341 individuals. This phylogeny was then examined to determine monophyly of the genus, distribution patterns of species groups, and congruence with SNSH. Results The genus Proctoporus did appear to be monophyletic and, therefore, it was valid to use this group to assess SNSH. The southernmost species were found to be the most basal, which was consistent with SNSH. The species occurring in the northern Andes did not exactly match the SNSH prediction. The Venezuelan and Trinidadian species did appear to be highly derived, as predicted by the hypothesis, but the Ecuadorian and Colombian species did not form a particular pattern in relation to the hypothesis. Main conclusions The SNSH does appear to have predictive power with regard to large‐scale distribution patterns. The finer‐scale patterns of speciation in the Andes, however, appear to be a more complex phenomenon that cannot be fully explained by a simple hypothesis. It is important to have a testable hypothesis in hand with which to compare data from disparate species groups. The incorporation of phylogenetic data of other high Andean taxa with similar distribution patterns is necessary to determine the full utility of SNSH in explaining evolutionary patterns in the Andes of South America.  相似文献   

6.
With 61 species occurring mostly in the Andes and adjacent lowland areas, Stenocercus lizards represent one of the most widespread and well-represented Andean vertebrate groups. Phylogenetic relationships among species of Stenocercus are inferred using different datasets based on mitochondrial DNA sequence data of 35 species and morphological data of 59 species. Among morphological data, polymorphic and meristic/morphometric characters are coded under the frequency parsimony and gap-weighting methods, respectively, and the accuracy of these methods is tested. When both types of characters are included, the resulting tree topology is more similar to the topologies obtained from analyses of DNA sequence data than those topologies obtained after exclusion of one or both types of characters. The phylogenetic hypotheses inferred including 59 species of Stenocercus (dataset 1) and excluding those species for which DNA data were not available (dataset 2) are generally congruent with each other, as well as with previously published hypotheses. The most parsimonious tree obtained from analysis of dataset 2 is used in a dispersal-vicariance analysis to infer ancestral areas and major biogeographical events. Species of Stenocercus are divided into two major clades. Clade A has diversified mostly in the central Andes, with a few species in the northern Andes and one species in the southern Andes. Clade B is more widespread, with species in the northern, central, and southern Andes, as well as in the Atlantic lowlands and Amazon basin. The most recent common ancestor of Stenocercus is inferred to have occurred in the eastern cordillera of the central Andes. Given morphological similarity and altitudinal distribution of some species nested in a northern-Andes clade, as well as the relatively recent uplift of this Andean region, it is possible that species in this clade have diverged as recently as the mid-Pliocene.  相似文献   

7.
We compiled a large database of 58 059 point locality records for 70 species and 434 subspecies of heliconiine butterflies and used these data to test evolutionary hypotheses for their diversification. To study geographical patterns of diversity and contact zones, we mapped: (1) species richness; (2) mean molecular phylogenetic terminal branch length; (3) subspecies richness and the proportion of specimens that were subspecific hybrids, and (4) museum sampling effort. Heliconiine species richness is high throughout the Amazon region and peaks near the equator in the foothills and middle elevations of the eastern Andes. Mean phylogenetic terminal branch length is lowest in the eastern Andes and tends to be low in species‐rich areas. By contrast, areas of high subspecies richness, where subspecies overlap in range and/or hybridize, are concentrated along the course of the Amazon River, with the eastern Andes slopes and foothills relatively depauperate in terms of local intraspecific phenotypic diversity. Spatial gradients in heliconiine species richness in the Neotropics are consistent with the hypothesis that species richness gradients are driven at least in part by variation in speciation and/or extinction rates, resulting in observed gradients in mean phylogenetic branch length, rather than via evolutionary age or niche conservatism alone. The data obtained in the present study, coupled with individual case studies of recently evolved Heliconius species, suggest that the radiation of heliconiine butterflies occurred predominantly on the eastern slopes of the Andes in Colombia, Ecuador, and Peru, as well as in the upper/middle Amazon basin. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 479–497.  相似文献   

8.
Viviparity is reported for Gegeneophis seshachari (Gymnophiona: Caeciliidae) from a gravid female containing four oviductal foetuses. The oviducts are highly vascularized and contain patches of thickened, layered tissue similar to foetal gut contents. Gegeneophis seshachari probably resemble other viviparous caecilians in having foetuses that ingest thickened oviduct lining using specialized deciduous teeth. This is the first report of viviparity in Asian amphibians and Indo-Seychellean caeciliids. Gegeneophis is the only caecilian genus known to include oviparous and viviparous species, and G. seshachari is the smallest known viviparous caecilian. Phylogenetic analysis of mitochondrial DNA sequences supports assignment of G. seshachari to a monophyletic Gegeneophis. Character optimization indicates that viviparity has evolved independently at least four times within Gymnophiona--a rate of incidence relative to the number of extant species that is higher than for other vertebrate groups except squamate reptiles. Our findings strengthen the proposal that caecilian reproduction demands further attention.  相似文献   

9.
It has been suggested repeatedly that the evolutionary transition from oviparity (egg-laying) to viviparity (live-bearing) in reptiles is irreversible. However, these adaptive arguments have yet to be tested by detailed examination of the phylogenetic distribution of oviparity and viviparity across a broad range of taxa. Using available data on reproductive modes and phylogenetic relationships within reptiles, we here quantify the numbers and directions of evolutionary transitions between oviparity and viviparity. Phylogenetic relationships among three diverse squamate groups (scincid lizards, colubrid snakes, elapid snakes) are currently inadequately known for inclusion in this study Among the remaining reptiles, oviparity has given rise to viviparity at least 35 times. Five possible instances of reversals (from viviparity to oviparity) are identified, but closer examination indicates that all have weak empirical support (i.e., they could be “unreversed” with little loss in parsimony, and/or are based on poorly substantiated phylogenetic hypotheses). Viviparity is clearly more frequently (and presumably easily) gained than lost in several disparate groups so far examined (reptiles, fishes, polychaete worms); this evolutionary bias should be considered when reproductive mode is optimized on a phylogeny or employed in phylogenetic reconstruction.  相似文献   

10.
Bark beetles in the genus Dendroctonus may attack and kill several species of coniferous trees, some of them causing major economic losses in temperate forests throughout North and Central America. For this reason, they have been widely studied. However, various aspects of the taxonomy and evolutionary history of the group remain contentious. The genus has been subdivided in species groups according to morphological, biological, karyological or molecular attributes, but the evolutionary affinities among species and species groups within the genus remain uncertain. In this study, phylogenetic relationships among Dendroctonus species were reassessed through parsimony‐based cladistic analysis of morphological and DNA sequence data. Phylogenetic inference was based on 36 morphological characters and on mitochondrial DNA sequences of the cytochrome oxidase I (COI) gene. Analyses were carried out for each dataset, as well as for the combined data analysed simultaneously, under equal and implied weights. According to the combined analysis, the genus Dendroctonus is a monophyletic group defined by at least three synapomorphic characters and there are four main lineages of varied composition and diversity within the genus. Within these lineages, several monophyletic groups match, to some extent, species groups defined by previous authors, but certain groups proposed by those authors are polyphyletic or paraphyletic.  相似文献   

11.
The taxonomic relationships within the dwarf chameleons (Bradypodion) of southern Africa have long been controversial. Although informal phenotypic groups have been suggested, the evolutionary relationships among the 15 recognised species in southern Africa have not been previously investigated. To investigate the relationships among species within this genus, fragments of two mitochondrial genes (16S ribosomal RNA and ND2) were sequenced and analysed using maximum parsimony, maximum likelihood and Bayesian inference. All analyses showed congruent topologies, revealing at least 5 well-supported clades distributed across distinct geographic regions. The mtDNA gene tree indicated that in many instances, geographic location has played a role in shaping the evolution of this group, and that the previously suggested phenotypic groupings do not adequately reflect evolutionary relationships. Furthermore, it appears that some of the currently recognised species (described on morphology) are polyphyletic for mitochondrial sequences, most notably those occurring in the isolated forest patches of north-eastern South Africa, near the Drakensberg Escarpment.  相似文献   

12.
We used molecular evidence to examine the roles that vicariance mechanisms (mountain-building and drainage changes during the Pleistocene) have played in producing phylogeographical structure within and among South American fish species of the temperate perch family Percichthyidae. The percichthyids include two South American genera, Percichthys and Percilia, each containing several species, all of which are endemic to southern Argentina and Chile (Patagonia). Maximum-likelihood phylogenies constructed using mitochondrial DNA (mtDNA) control region haplotypes and nuclear GnRH3-2 intron allele sequences support the current taxonomy at the genus level (both Percichthys and Percilia form strongly supported, monophyletic clades) but indicate that species-level designations need revision. Phylogeographical patterns at the mtDNA support the hypothesis that the Andes have been a major barrier to gene flow. Most species diversity occurs in watersheds to the west of the Andes, together with some ancient divergences among conspecific populations. In contrast, only one species (Percichthys trucha) is found east of the Andes, and little to no phylogeographical structure occurs among populations in this region. Mismatch analyses of mtDNA sequences suggest that eastern populations last went through a major bottleneck c. 188 000 bp, a date consistent with the onset of the penultimate and largest Pleistocene glaciation in Patagonia. We suggest that eastern populations have undergone repeated founder-flush events as a consequence of glacial cycles, and that the shallow phylogeny is due to mixing during recolonization periods. The area of greater diversity west of the Andes lies outside the northern limit of the glaciers. mtDNA mismatch analysis of the genus Percilia which is restricted to this area suggests a long-established population at equilibrium. We conclude that patterns of genetic diversity in these South American genera have been primarily influenced by barriers to gene flow (Andean orogeny, and to a lesser extent, isolation in river drainages), and by glacial cycles, which have resulted in population contraction, re-arrangement of some watersheds, and the temporary breakdown of dispersal barriers among eastern river systems.  相似文献   

13.
Hagenbachia , which until recently was included in Haemodoraceae, belongs in Asphodeleae in Liliaceae sensu lato or Anthericaceae sensu stricto. Hagenbachia and its putative relatives Echeandia, Anthericum , and Chlorophytum are characterized by anatropous ovules, curved or angled embryos, and nonarillate seeds, which indicate a position in Anthericaceae, as well as a black, colliculose seed coat. Hagenbachia includes five species of Central and South America; one, H. columbiana , is described here. The available data suggest the species are ecologically as well as geographically isolated. There are two broad leaved species. One is endemic to the lowlands of eastern Brazil and the second is found at middle elevations in Costa Rica and Panama and on the eastern slope of the Andes in Ecuador. Of the three narrow leaved species, one is endemic to the Cordillera Central in Columbia, a second is endemic to eastern Paraguay and southeastern Bolivia and the third occurs from eastern Bolivia northeast to east-central Brazil.  相似文献   

14.
To study the potential importance of introgressive hybridization to the evolutionary diversification of a carabid beetle lineage, we studied intraspecific and trans-species polymorphisms in the mitochondrial NADH dehydrogenase subunit 5 (ND5) gene sequence (1083 bp) in four species of the subgenus Ohomopterus (genus Carabus) in central and eastern Honshu, Japan. Of the four species, C. insulicola is parapatric with the other three, and can hybridize naturally with at least two. This species possesses two haplotypes of remote lineages. We classified ND5 haplotypes using polymerase chain reaction-restriction fragment length polymorphism with TaqI endonuclease for 524 specimens, and sequenced 143 samples. Analysis revealed that each species was polyphyletic in its mitochondrial DNA phylogeny, representing a marked case of trans-species polymorphism. Recent one-way introgression of mitochondria from C. arrowianus nakamurai to C. insulicola, and from C. insulicola to C. esakii, was inferred from the frequency of identical sequences between these species and from direct evidence of hybridization in their contact zones. Other intraspecific polymorphisms in the four species may be due to undetected introgressive hybridization (e.g. C. insulicola to C. maiyasanus) or from stochastic lineage sorting of ancestral polymorphisms. This beetle group has a genital lock-and-key system, with species-specific or subspecies-specific genital morphology that may act as a barrier to hybridization. However, our results demonstrate that introgressive hybridization has occurred multiple times, at least for mitochondria, despite differences among, and stability within, morphological characters that distinguish local populations. Thus, hybridization and introgression could have been key processes in the evolutionary diversification of Ohomopterus.  相似文献   

15.
The simple geographic structure of island systems often makes them tractable for studies of the patterns and processes of biological diversification. The Calyptophilus chat-tanagers of Hispaniola are of general evolutionary interest because their multiple lineages might have arisen on a single island, of conservation concern because several isolated populations are nearly extinct, and taxonomically ambiguous because they have been variously lumped or split into one to four species. To explore the context of diversification of the seven extant Calyptophilus populations, we conducted a multilocus coalescent analysis based on sequences of mitochondrial ND2 and three nuclear intron loci. We then compared patterns of phylogeographic genetic variation with the morphological differences that distinguish these populations. Mitochondrial haplotypes formed two reciprocally monophyletic groups separated by a large magnitude of nucleotide divergence. Intron structure largely paralleled the geographic grouping pattern of the mitochondrial DNA (mtDNA), but these groups were only reciprocally monophyletic at one of the three introns. Also, the magnitude of between-group divergence was much lower in the introns than mtDNA genealogies. Multilocus coalescent analyses inferred a nonzero divergence time between these two major geographic groups, but suggested that they have experienced a low level of gene flow. All four markers showed substantial allele sharing within each of the two groups, demonstrating that many now separated montane populations do not have long histories of isolation. Considered in concert, our multilocus phylogeographic reconstructions support the recognition of two species within the Calyptophilus complex, and raise the possibility that these taxa differentiated prior to the fusion of the two palaeo-islands that form present-day Hispaniola.  相似文献   

16.
The lacertid lizard Lacerta vivipara is one of the few squamate species with two reproductive modes. We present the intraspecific phylogeny obtained from neighbor-joining and maximum-parsimony analyses of the mtDNA cytochrome b sequences for 15 individuals from Slovenian oviparous populations, 34 individuals from western oviparous populations of southern France and northern Spain, 92 specimens from European and Russian viviparous populations, and 3 specimens of the viviparous subspecies L. v. pannonica. The phylogeny indicates that the evolutionary transition from oviparity to viviparity probably occurred once in L. vivipara. The western oviparous group from Spain and southern France is phylogenetically most closely related to the viviparous clade. However, the biarmed W chromosome characterizing the western viviparous populations is an apomorphic character, whereas the uniarmed W chromosome, existing both in the western oviparous populations and in the geographically distant eastern viviparous populations, is a plesiomorphic character. This suggests an eastern origin of viviparity. Various estimates suggest that the oviparous and viviparous clades of L. vivipara split during the Pleistocene. Our results are discussed in the framework of general evolutionary models: the concept of an oviparity-viviparity continuum in squamates, the cold climate model of selection for viviparity in squamates, and the contraction-expansion of ranges in the Pleistocene resulting in allopatric differentiation.  相似文献   

17.
Historically, an understanding of viviparity and its evolution in Old World chameleons (Chamaeleonidae) has lagged behind that of other squamate families. Not only is reproductive information scarce or entirely absent for most chameleon species, but the literature reveals no consensus as to the frequency and ecological circumstances under which chameleon viviparity evolved. We integrated information on reproductive modes for nearly all chameleon species with recently published family-scale phylogenetic and ecological analyses to clarify aspects of reproductive evolution in chameleons. Ancestral-trait reconstructions, after accounting for phylogenetic uncertainty, indicated that viviparity has arisen a minimum of three times in Chamaeleonidae, with each origin of live birth in closed-canopy forests. Our maximum-likelihood optimization therefore did not support the previous hypotheses of one, two or four origins of viviparity in the family. Past claims that arboreality would not allow for evolution of viviparity were also not supported, nor was a recent suggestion that viviparity has reverted to oviparity. However, cold climates of high latitudes and elevations may have selected for viviparity in arboreal chameleons. While peritoneal pigmentation may facilitate viviparity, its role as an exaptation rather than an adaptation remains equivocal without data from a wider range of chameleon species. Based on a comprehensive review of reproductive modes throughout the family, our study has resolved the number of origins of viviparity in Chamaeleonidae and provided evidence that live birth evolved under arboreal conditions on three separate occasions in this enigmatic squamate group. This study also reveals the value of using phylogenetic analysis in a manner that is robust to uncertainty (rather than simple correlational approaches) when the goal is to reconstruct evolutionary sequences and selective pressures.  相似文献   

18.
Modelling potential species distributions has become a powerful tool for botanists in recent years. Using herbarium specimen data and GIS desktop software, we modelled the potential distribution of 36 endemic and 47 non‐endemic species of Anthurium (Araceae) in Ecuador based on mean annual temperature and humidity. Our results indicate the most important region for endemics in western Ecuador lies between the Andes and Coastal mountain ranges between 200 and 700 m, while for eastern Ecuador a belt of potential high diversity occurs directly along the foothills of the Andes under 1000 m. A very interesting result of this study highlights a site of predicted high species diversity at the borders of Guyas, Cañar, Bolivar, and Chimborazo, as well as sites within the Cordillera del Condor along the border with Peru. Potential richness for non‐endemic Anthurium species was similar to that of endemics with the inclusion of a large area of Amazonian lowlands in the east of the country. Over 40% of the protected areas in Ecuador occur in the eastern Amazonian lowlands, an area of low diversity for Anthurium endemics. Overall, for areas with potential high concentrations of endemic species identified in this study, only 3.1% are within Ecuador's protected areas.  相似文献   

19.
The evolution of viviparity in squamates has been the focus of much scientific attention in previous years. In particular, the possibility of the transition from viviparity back to oviparity has been the subject of a vigorous debate. Some studies have suggested this reversal is more frequent than previously thought. However, none of them provide conclusive evidence. We investigated this problem by studying the phylogenetic relationships between oviparous and viviparous lineages of the reproductively bimodal lizard species Zootoca vivipara . Our results show that viviparous populations are not monophyletic, and that several evolutionary transitions in parity mode have occurred. The most parsimonious scenario involves a single origin of viviparity followed by a reversal back to oviparity. This is the first study with a strongly supported phylogenetic framework supporting a transition from viviparity to oviparity.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 1–11.  相似文献   

20.
Phylogenetic relationships and evolutionary patterns in the genus Barbus were examined through the analysis of the complete sequences of three mitochondrial genes: ATPases 8 and 6, which overlap slightly, and cytochrome b. This complex genus includes diploid as well as tetraploid and hexaploid species that are distributed throughout the Palaearctic, Ethiopian and Asiatic biogeographical regions. Given that genome duplication is an important evolutionary mechanism in eukaryotes, in the present report we attempt to describe its role in the evolution of the genus Barbus, as well as drawing systematic and phylogenetic conclusions. The phylogenetic results indicated the splitting of the current Barbus genus into five main mitochondrial lineages corresponding to (i) the genus Barbus sensu stricto (tetraploid, which is subdivided into the subgenera Barbus and Luciobarbus), (ii) the hexaploid species, (iii) the Ethiopian tetraploid species, (iv) the African diploid species, and (v) the Asian diploid species. The branching of 'foreign' genera as sister groups of some of these monophyletic assemblages (such as Aulopyge is to Barbus sensu stricto or Varicorhinus is to the hexaploid barbels) demonstrates the polyphyly of the group. Moreover, the relationships between the proposed lineages also show that genome duplication may be considered as a homoplasic character since it must have occurred over at least three independent periods and/or in three independent areas. In relation to the possible saltational evolutionary model for the polyploid species examined here, it was found that, although feasible at the nuclear level, the mitochondrial markers looked at do not appear to have undergone this type of evolution. Rather, they seem to have experienced more or less constant change through time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号