首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
酶法制备壳寡糖及其生物学功能   总被引:2,自引:0,他引:2  
用正交试验方法考察温度、酶浓度、pH对蜗牛酶降解壳聚糖的影响,筛选蜗牛酶降解壳聚糖的最佳反应条件,采用SDS-PAGE方法分析降解产物,制备具有生物学功能的壳寡糖。用不同浓度的壳寡糖处理人肝癌HepG2细胞,观察细胞形态学变化,MTT法检测壳寡糖对其增殖的影响,琼脂糖凝胶电泳检测DNA变化,流式细胞术检测凋亡率(AR)。结果表明:蜗牛酶降解壳聚糖的产物主要是聚合度为4以上的寡糖,更多的接近壳六糖。最佳反应条件为pH 4.0、温度40℃、酶和底物质量比为4∶50;壳寡糖质量浓度在2~4 mg/mL时,对HepG2细胞增殖有抑制效应,细胞经壳寡糖处理48 h后,开始空泡化,DNA出现明显的凋亡条带,AR明显高于对照组。在最佳反应条件下蜗牛酶能较好地降解壳聚糖,制备的壳寡糖在一定浓度范围内能通过诱导HepG2细胞发生凋亡而抑制其增殖,其作用呈浓度依赖性。  相似文献   

2.
以海洋甲壳多糖为原料,研究了酶法解制备壳寡糖的方法,通过对专一性和非专一性除解用酶的筛选,确定以壳聚糖酶或6036要降为降解酶;考察了底物浓度、酶量、温度、pH、溶解介质等因素对降解反应的影响;提出了反应与分离相耦合制备壳寡糖的新构思,在此基础上进行了扩大试验,确认了过程实现工业化生产的可行性,对所生产壳寡糖的抑瘤活性研究证明一定铁壳寡糖具有很好的生物活性,具有抗肿瘤药物前景。  相似文献   

3.
对来源于枯草芽孢杆菌菌株168(Bacillus subtilis 168)的壳聚糖酶编码基因进行了序列优化及全合成,并在毕赤酵母(Pichia pastoris)中实现了分泌表达,表达产物的蛋白质浓度达到0.30mg/ml。表达的壳聚糖酶最适p H为5.6,最适温度为55℃,比酶活达84.54U/ml。该酶在50℃及以下较稳定。利用该酶水解低脱乙酰度壳聚糖并使用超高效液相色谱-四极杆飞行时间质谱(ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry,UPLC-QTOF MS)对产物的组分进行了分离及鉴定。根据一级质谱信息,推测酶解产物中包含至少37种聚合度2~18,不同脱乙酰度的壳寡糖组分。综上,利用毕赤酵母分泌表达了来源于枯草芽孢杆菌菌株168的壳聚糖酶基因,利用表达产物水解制备了低脱乙酰度壳寡糖并对其组分进行了分析,可为后续壳寡糖结构与功能关系的研究提供参考。  相似文献   

4.
目的:克隆壳聚糖酶基因于大肠杆菌中实现高表达,制备壳寡糖。方法:以枯草芽孢杆菌总DNA为模板扩增壳聚糖酶基因(CSN),克隆至载体pET23a(+)上,转化菌株BL21(DE3)。重组子经0.5 mmol/L IPTG诱导后,SDS-PAGE和质谱检测与鉴定重组酶。酶纯化后水解壳聚糖,薄层色谱分析其水解产物。结果:质谱证明壳聚糖酶(31.5kDa)成功表达,表达量占菌体总蛋白的45%左右。纯化后重组酶浓度为900 mg/L,纯度95%、回收率85%,酶活力为10 000 U/mg。壳聚糖降解产物为壳二糖至壳四糖。结论:原核表达载体pET23a(+)-CSN构建正确,壳聚糖酶表达量与活性高,适用于水解壳聚糖制备壳寡糖。  相似文献   

5.
高活性壳聚糖酶制剂的制备及其对壳聚糖降解作用的研究   总被引:3,自引:0,他引:3  
对系列壳聚糖酶高产菌株的产酶性能及产酶发酵液的壳聚糖酶活性进行了比较,从中筛选出一株优良芽孢杆菌菌株,其产酶发酵液的壳聚糖酶活力高达5000U/mL(以单位时间内底物壳聚糖的减少量确定酶活力)。利用此粗制壳聚糖酶制剂对壳聚糖进行酶解产糖的研究表明:壳聚糖的转化率及壳寡糖的产率在适合的酶解条件下,短时间内即可接近100%。  相似文献   

6.
壳寡糖的制备及其在医学和农业生产中的应用   总被引:1,自引:0,他引:1  
壳寡糖为一种由2~10个氨基葡萄糖经β-1,4糖苷键连接而成的寡糖聚合物,可通过化学水解或酶降解几丁质或壳聚糖获得,在医学及农业生产等各个领域具有广泛的研究和应用价值。壳寡糖天然无毒,分子量相对较低,水溶性好,易于吸收,且具有良好的生物相容性。此外,壳寡糖也表现出了良好的生物学活性,包括抗肿瘤、抗炎、免疫调节、抗菌、改善糖脂代谢紊乱、保护神经损伤等。对壳寡糖的制备和表征、生物学功能及应用进展进行了综述,并对壳寡糖产业目前存在的问题及未来的研究方向进行了讨论,以期为壳寡糖的深度开发提供依据。  相似文献   

7.
壳寡糖是一种由脱乙酰基几丁质经酶降解后制备的氨基葡萄糖,它具有多方面的生物活性,在调节植物的生理机能、调控植物形态发生、诱导植物抗病性、抗逆性以及抑制真菌、细菌的生长发育等方面的作用多有报道,但关于壳寡糖对植物病毒的抑制作用未见报道.  相似文献   

8.
优化并全合成里氏木霉几丁质酶基因,在毕赤酵母中实现分泌表达。产物几丁质酶的蛋白浓度达0. 17mg/ml,最适pH为5. 6,最适温度为65℃,酶活为0. 52U/ml。该酶在50℃及以下较稳定。利用该酶水解低脱乙酰度壳聚糖并对产物的组成及结构进行分析。超高效液相色谱-四极杆飞行时间质谱(ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry,UPLC-QTOF MS)检测及分析结果显示,酶解产物中包含至少41种聚合度2~18,不同脱乙酰度的壳寡糖组分;核磁共振(nuclear magnetic resonance,NMR)检测及分析结果显示,产物壳寡糖的还原端主要为N-乙酰氨基葡萄糖,非还原端则同时含有N-乙酰氨基葡萄糖及氨基葡萄糖。相关结果可为壳寡糖的结构与功能关系研究提供参考。  相似文献   

9.
同甲壳素和壳聚糖这种生物大分子相比,壳寡糖具有许多独特的功能性质,如水溶性、保湿性、抗菌性、抗肿瘤和免疫促进性等。以数均分子量为5000的壳寡糖作为研究模型,根据凝胶电泳和紫外光谱分析,提出纳米级壳寡糖与pEGFPC-1质粒能通过静电结合或物理包裹形成复合物从而对DNA进行保护,同时证明形成壳寡糖/DNA复合物后,壳寡糖能够极大地提高DNA的贮存稳定性和结构稳定性;而DNaseI酶解实验也显示纳米级壳寡糖在合适比例下DNA有良好的保护作用,使其不被DNaseI降解,证明了纳米级壳寡糖应用于基因治疗载体的可行性与安全性。  相似文献   

10.
壳聚糖是由N-乙酰氨基葡萄糖和D-氨基葡萄糖通过β-1,4-糖苷键连接而成的碱性多糖。壳寡糖是壳聚糖的降解产物,具有良好的生物活性、溶解度及生物利用度,在医药、食品等领域有着广泛的作用。壳聚糖酶是一类特异性降解部分或完全脱乙酰壳聚糖的糖苷水解酶,因其降解效率高、反应温和可控而成为目前的研究热点。本文对壳聚糖酶的性质、结构、催化机制以及应用等方面进行了综述,总结梳理这些信息对于探寻目前壳聚糖酶研究中存在的一些问题以及今后的研究方向有重要意义,有助于促进壳聚糖酶的进一步开发利用。  相似文献   

11.
Biodegradable hollow capsules encapsulating proteins were prepared via layer-by-layer assembly of chitosan and dextran sulfate on protein-entrapping mesoporous silica particles and the subsequent removal of the silica. The enzymatic degradation of the capsules in the presence of chitosanase was explored by scanning electron microscopy (SEM). With increasing time, the chitosan component was degraded by chitosanase, and the capsules began to deform and were finally destroyed. Sustained release of the encapsulated proteins was attained by using the enzymatic degradation of the hollow capsules. The release behavior was successfully manipulated by altering the charge of capsule surface.  相似文献   

12.
4-Methylumbelliferyl beta-chitotrioside [(GlcN)(3)-UMB] was prepared from 4-methylumbelliferyl tri-N-acetyl-beta-chitotrioside [(GlcNAc)(3)-UMB] using chitin deacetylase from Colletotrichum lindemuthianum, and hydrolyzed by chitosanase from Streptomyces sp. N174. The enzymatic deacetylation of (GlcNAc)(3)-UMB was confirmed by (1)H-NMR spectroscopy and mass spectrometry. When the (GlcN)(3)-UMB obtained was incubated with chitosanase, the fluorescence intensity at 450 nm obtained by excitation at 360 nm was found to increase with proportion to the reaction time. The rate of increase in the fluorescence intensity was proportional to the enzyme concentration. This indicates that chitosanase hydrolyzes the glycosidic linkage between a GlcN residue and UMB moiety releasing the fluorescent UMB molecule. Since (GlcN)(3) itself cannot be hydrolyzed by the chitosanase, (GlcN)(3)-UMB is considered to be a useful low molecular weight substrate for the assay of chitosanase. The k(cat) and K(m) values obtained for the substrate (GlcN)(3)-UMB were determined to be 8.1 x 10(-5) s(-1) and 201 microM, respectively. From TLC analysis of the reaction products, the chitosanase was found to hydrolyze not only the linkages between a GlcN residue and UMB moiety, but also the linkages between GlcN residues. Nevertheless, the high sensitivity of the fluorescence detection of the UMB molecule would enable a more accurate determination of kinetic constants for chitosanases.  相似文献   

13.
Recently, considerable attention has been focused on chitosan oligosaccharides (COSs) due to their various biological activities. COSs can be prepared by enzymatic degradation of chitosan, which is the deacetylation product of chitin, one of the most abundant biopolymers in nature. In the current study, we recombinantly expressed a chitosanase and used it for COS preparation. A bacillus-derived GH8 family chitosanase with a 6×His tag fused at its N-terminal was expressed in the Escherichia coli strain BL21(DE3) as a soluble and active form. Its expression level could be as high as 500 mg/L. Enzymatic activity could reach approximately 140,000 U/L under our assay conditions. The recombinant chitosanase could be purified essentially to homogeneity by immobilized metal-ion affinity chromatography. The enzyme could efficiently convert chitosan into monomer-free COS: 1 g of enzyme could hydrolyze about 100 kg of chitosan. Our present work has provided a cheap chitosanase for large-scale COS production in industry.  相似文献   

14.
Sun Y  Liu W  Han B  Zhang J  Liu B 《Biotechnology letters》2006,28(17):1393-1399
Two extracellular chitosanases (ChiX and ChiN) were extracted from Microbacterium sp. OU01 with Mr values of 81 kDa (ChiX) and 30 kDa (ChiN). ChiN was optimally active at pH 6.2 and 50°C and ChiX at pH 6.6 and 60°C (assayed over 15 min). Both the activities increased with the degree of deacetylation (DDA) of chitosan. ChiN hydrolyzed oligomers of glucosamine (GlcN) larger than chitopentaose, and chitosan with 62–100% DDA; but ChiX acted on chitosan and released GlcN. Hydrolysis of chitosan with 99% DDA by ChiN released chitobiose, chitotriose and chitotetraose as the major products.  相似文献   

15.
从来自拟青霉属真菌Paecilomyces sp.CS-Z的发酵液中获得一种壳聚糖酶,该酶被纯化了9.4倍,产率为48.2%。经SDS-PAGE分析确定为单一条带,分子量为29kDa,其最适pH为6.0–6.5,最适温度为55℃,在80℃处理60min后,能保持较好的热稳定性,Hg2+完全抑制了酶活,对脱乙酰度85%–95%的壳聚糖具有较高的水解活性,而对几丁质和羧甲基纤维素无活性。薄层层析和质谱分析表明该酶是一种内切酶,其水解产物为聚合度大于6的壳寡糖,其理化性质与至今报道的壳聚糖酶有所不同,为壳聚糖酶的开发提供了重要的实验依据。  相似文献   

16.
Chitosanase is an enzyme that hydrolyzes chitosan, a beta-(1-4) glucosamine polymer, into size-specific oligomers that have pharmaceutical and biological properties. The aim of the present work was to use the bipolar membrane technology, in particular the OH(-) stream produced by water splitting, for inactivation of chitosanase at alkaline pH in order to terminate the enzymatic reaction producing chitosan oligomers. The objectives consisted of studying the effect of pH: (a) on the stability of chitosanase, and (b) on the catalytic activity of chitosanase during chitosan hydrolysis. The enzyme was found to be stable in the pH range of 3-8 during at least 7h, and partially lost its activity after 1h at pH 8. The catalytic activity of chitosanase during chitosan hydrolysis decreased after pH adjustment by electrobasification. The reaction rate decreased by 50% from pH 5.5 to 6, whereas the reaction was completely inhibited at pH>7. The decrease of reaction rate was due to chitosan substrate insolubilization and chitosanase denaturation at alkaline pH values.  相似文献   

17.
The advantage of usingStreptomyces griseus HUT 6037 in the production of chitinase or chitosanase is that the organism is capable of hydrolyzing amorphous or crystal-line chitin and chitosan according to the type of the substrate used. We investigated the effects of the enzyme induction time and chitin sources, CM-chitosan and deacetylated chitosan (degree of deacetylation 75–99%), on production of chitosanase. We found that this strain accumulated chitosanase when cells were grown in the culture medium containing chitosanaceous substrates instead of chitinaceous substrates. The highest chitosanase activity was obtained at 4 days of cultivation with 99% deacetylated chitosan. Soluble chitosan (53% deacetylated chitosan) was found to induce chitinase as well as chitosanase. The specific activities of chitinase and chitosanase were 0.91 and 1.33 U/mg protein at 3 and 5 days, respectively. From the study of the enzymatic digestibility of various degrees of deacetylated chitosan, it was found that (GlcN)3, (GlcN)4 and (GlcN)5 were produced during the enzymatic hydrolysis reaction. The results of this study suggested that the sugar composition of (GlcN)3 was homogeneous and those of (GlcN)4 and (GlcN)5 were heterogeneous.  相似文献   

18.
Spheroplasts ofMucor rouxii were prepared from mycelial and yeast-like cells by use of aPenicillium islandicum enzymatic complex. This enzyme preparation, which presents high chitosanase and chitinase activities, was produced by growingP. islandicum either on mycelial or yeast-like walls ofM. rouxii. The presence of magnesium sulfate as an osmotic stabilizer was critical to obtain high yields of spheroplasts from mycelial forms. In the case of yeast-like cells, pretreatment with β-mercaptoethanol followed by magnesium sulfate was essential for extensive spheroplast production.  相似文献   

19.
To identify the amino acids responsible for the substrate binding of chitosanase from Bacillus circulans MH-K1 (MH-K1 chitosanase), Tyr148 and Lys218 of the chitosanase were mutated to serine and proline, respectively, and the mutated chitosanases were characterized. The enzymatic activities of Y148S and K218P were found to be 12.5% and 0.16% of the wild type, respectively. When the (GlcN)3 binding ability to the chitosanase was evaluated by fluorescence spectroscopy and thermal unfolding experiments, the binding abilities of both mutant enzymes were markedly reduced as compared with the wild type enzyme. The affinity of the enzyme for the trisaccharide decreased by 1.0 kcal/mol of binding free energy for Y148S, and 3.7 kcal/mol for K218P. The crystal structure of K218P revealed that Pro218 forms a cis-peptide bond and that the state of the flexible loop containing the 218th residue is considerably affected by the mutation. Thus, we conclude that the flexible loop containing Lys218 plays an important role in substrate binding, and that the role of Tyr148 is less critical, but still important, due to a stacking interaction or hydrogen bond.  相似文献   

20.
植物内生真菌是挖掘不同类型壳聚糖酶及发现新酶的资源宝库。该研究从122株柑橘和血散薯内生真菌中筛选能产生壳聚糖酶的菌株,对其进行鉴定,初步研究酶活力影响因素,为后期其酶学性质及产壳聚糖酶内生真菌与宿主植物病害防御互作关系的研究奠定基础。通过透明圈法初筛结合液体发酵法进行复筛,得到2株可产生壳聚糖酶的内生真菌Stdif9和Stdif9-4,并发现Stdif9-4最高酶活力(0.968 U·mL-1)显著高于Stdif9(0.780 U·mL-1)。采用形态学和分子生物学结合的方法将菌株Stdif9-4鉴定为青霉属菌株,即Penicillium sp. Stdif9-4。通过DNS试剂法初步研究影响该菌株产壳聚糖酶活力的因素,发现不同培养时间对菌株壳聚糖酶活力具有显著影响,在培养96 h时,壳聚糖酶活力达到最大值。9种金属离子对菌株的酶活力具有不同影响,其中Mn2+和Ca2+对壳聚糖酶活力具有明显的激活作用; Ag+、Zn2+、Cd2+、Ba2+和Fe3+对壳聚糖酶活力具有不同程度的抑制作用,并且Ag+的抑制作用最为显著; K+和Na+对壳聚糖酶活力无显著影响。不同培养代数菌株产酶活力无显著差异,说明其产酶活力稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号