首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution.  相似文献   

2.
The mysterious ‘fairy circles’ are vegetation‐free discs that cover vast areas along the pro‐Namib Desert. Despite 30 yr of research their origin remains unknown. Here we adopt a novel approach that focuses on analysis of the spatial patterns of fairy circles obtained from representative 25‐ha aerial images of north‐west Namibia. We use spatial point pattern analysis to quantify different features of their spatial structures and then critically inspect existing hypotheses with respect to their ability to generate the observed circle patterns. Our working hypothesis is that fairy circles are a self‐organized vegetation pattern. Finally, we test if an existing partial‐differential‐equation model, that was designed to describe vegetation pattern formation, is able to reproduce the characteristic features of the observed fairy circle patterns. The model is based on key‐processes in arid areas such as plant competition for water and local resource‐biomass feedbacks. The fairy circles showed at all three study areas the same regular spatial distribution patterns, characterized by Voronoi cells with mostly six corners, negative correlations in their size up to a distance of 13 m, and remarkable homogeneity over large spatial scales. These results cast doubts on abiotic gas‐leakage along geological lines or social insects as causal agents of their origin. However, our mathematical model was able to generate spatial patterns that agreed quantitatively in all of these features with the observed patterns. This supports the hypothesis that fairy circles are self‐organized vegetation patterns that emerge from positive biomass‐water feedbacks involving water transport by extended root systems and soil‐water diffusion. Future research should search for mechanisms that explain how the different hypotheses can generate the patterns observed here and test the ability of self‐organization to match the birth‐ and death dynamics of fairy circles and their regional patterns in the density and size with respect to environmental gradients.  相似文献   

3.
流域径流泥沙对多尺度植被变化响应研究进展   总被引:16,自引:0,他引:16  
张志强  王盛萍  孙阁  谢宝元 《生态学报》2006,26(7):2356-2364
植被变化与流域水文过程构成一个反馈调节系统,是目前生态水文学研究的重点对象.由于植被自身的生长发育以及受自然因素和人为干扰的作用,植被变化具有多尺度性;由于受流域水文环境的异质性和水文通量的变化性的影响,流域水文过程也同样具有多尺度性.因此,只有通过对不同尺度生态水文过程分析,才能揭示流域径流泥沙对植被变化的响应机理.从不同时空尺度回顾了植被生长、植被演替、植被分布格局变化、造林以及森林经营措施等对流域径流泥沙影响的主要研究成果;概括了目前研究采用的3种主要方法,即植被变化对坡面水流动力学影响的实验室模拟、坡面尺度和流域尺度野外对比观测实验以及水文生态模型模拟方法;分析了植被变化与径流泥沙响应研究要考虑的尺度问题,从小区尺度上推至流域尺度或区域尺度时应考虑不同的生物物理控制过程.研究认为,要确切理解植被与径流泥沙在不同时空尺度的相互作用,必须以等级生态系统的观点为基础,有效结合生态水文与景观生态的理论,从地质-生态-水文构成的反馈调节入手,系统地理解植被变化与径流泥沙等水分养分之间的联系及反馈机制,建立尺度转换的基础.同时,作为有效的研究工具,今后水文模型的发展应更加注重耦合植被生理生态过程以及景观生态过程,从流域径流泥沙对多尺度植被变化水文响应的过程与机制入手,为植被恢复与重建、改善流域水资源状况和流域生态环境奠定基础.  相似文献   

4.
The effect of grazing on the spatial heterogeneity of vegetation   总被引:29,自引:0,他引:29  
P. Adler  D. Raff  W. Lauenroth 《Oecologia》2001,128(4):465-479
Grazing can alter the spatial heterogeneity of vegetation, influencing ecosystem processes and biodiversity. Our objective was to identify why grazing causes increases in the spatial heterogeneity of vegetation in some cases, but decreases in others. The immediate effect of grazing on heterogeneity depends on the interaction between the spatial pattern of grazing and the pre-existing spatial pattern of vegetation. Depending on the scale of observation and on the factors that determine animal distribution, grazing patterns may be stronger or weaker than vegetation patterns, or may mirror the spatial structure of vegetation. For each possible interaction between these patterns, we make a prediction about resulting changes in the spatial heterogeneity of vegetation. Case studies from the literature support our predictions, although ecosystems characterized by strong plant-soil interactions present important exceptions. While the processes by which grazing causes increases in heterogeneity are clear, how grazing leads to decreases in heterogeneity is less so. To explore how grazing can consistently dampen the fine-scale spatial patterns of competing plant species, we built a cell-based simulation model that features two competing plant species, different grazing patterns, and different sources of vegetation pattern. Only the simulations that included neighborhood interactions as a source of vegetation pattern produced results consistent with the predictions we derived from the literature review.  相似文献   

5.
Ravi S  D'Odorico P  Wang L  Collins S 《Oecologia》2008,158(3):545-555
Ring-shaped growth patterns commonly occur in resource-limited arid and semi-arid environments. The spatial distribution, geometry, and scale of vegetation growth patterns result from interactions between biotic and abiotic processes, and, in turn, affect the spatial patterns of soil moisture, sediment transport, and nutrient dynamics in aridland ecosystems. Even though grass ring patterns are observed worldwide, a comprehensive understanding of the biotic and abiotic processes that lead to the formation, growth and breakup of these rings is still lacking. Our studies on patterns of infiltration and soil properties of blue grama (Bouteloua gracilis) grass rings in the northern Chihuahuan desert indicate that ring patterns result from the interaction between clonal growth mechanisms and abiotic factors such as hydrological and aeolian processes. These processes result in a negative feedback between sediment deposition and vegetation growth inside the bunch grass, which leads to grass die back at the center of the grass clump. We summarize these interactions in a simple theoretical and conceptual model that integrates key biotic and abiotic processes in ring formation, growth and decline.  相似文献   

6.
A continuing discussion in applied and theoretical ecology focuses on the relationship of different organisational levels and on how ecological systems interact across scales. We address principal approaches to cope with complex across-level issues in ecology by applying elements of hierarchy theory and the theory of complex adaptive systems. A top-down approach, often characterised by the use of statistical techniques, can be applied to analyse large-scale dynamics and identify constraints exerted on lower levels. Current developments are illustrated with examples from the analysis of within-community spatial patterns and large-scale vegetation patterns. A bottom-up approach allows one to elucidate how interactions of individuals shape dynamics at higher levels in a self-organisation process; e.g., population development and community composition. This may be facilitated by various modelling tools, which provide the distinction between focal levels and resulting properties. For instance, resilience in grassland communities has been analysed with a cellular automaton approach, and the driving forces in rodent population oscillations have been identified with an agent-based model. Both modelling tools illustrate the principles of analysing higher level processes by representing the interactions of basic components.The focus of most ecological investigations on either top-down or bottom-up approaches may not be appropriate, if strong cross-scale relationships predominate. Here, we propose an ‘across-scale-approach’, closely interweaving the inherent potentials of both approaches. This combination of analytical and synthesising approaches will enable ecologists to establish a more coherent access to cross-level interactions in ecological systems.  相似文献   

7.
Geographic characters--traits describing the spatial distribution of a species-may both affect and be affected by processes associated with lineage birth and death. This is potentially confounding to comparative analyses of species distributions because current models do not allow reciprocal interactions between the evolution of ranges and the growth of phylogenetic trees. Here, we introduce a likelihood-based approach to estimating region-dependent rates of speciation, extinction, and range evolution from a phylogeny, using a new model in which these processes are interdependent. We demonstrate the method with simulation tests that accurately recover parameters relating to the mode of speciation and source-sink dynamics. We then apply it to the evolution of habitat occupancy in Californian plant communities, where we find higher rates of speciation in chaparral than in forests and evidence for expanding habitat tolerances.  相似文献   

8.
Li BL 《Acta biotheoretica》2002,50(3):141-154
This paper describes a theoretical framework of ecological phase transitions for modeling tree-grass dynamics and analyzing the shifts or phase transitions from one vegetation structure to another in the southern Texas landscape. This framework implements the integration of percolation theory, fractal geometry and phase transition theory as a method for modeling the spatial patterns of tree-grass dynamics, and nonlinear Markov non-equilibrium thermodynamic stability theory as a method for characterizing temporal tree-grass dynamics and phase transition. An historical sequence of aerial photographs at a Prosopis - thornscrub savanna parkland site in southern Texas was used to determine the parameters of the models. The preliminary analytical result accords well with current understanding and field survey of vegetation dynamics in the southern Texas landscape. The potential of such approaches and other relevant theories such as self-organized criticality and synergetics to vegetation dynamics is also discussed.  相似文献   

9.
The range dynamics of a species can either be governed by the spatial tracing of the fundamental environmental niche or by adaptation that allows to occupy new niches. Therefore, the investigation of spatial variation in the realized environmental niche is central to the understanding of species range limit dynamics. However, the study of intraspecific niche variation has been neglected in most phylogeographical studies. We studied the spatial distribution of the realized environmental niche in three land snail species of the genus Candidula , integrating phylogeographical methods, morphometrics, and spatial biodiversity informatics . The phylogeographical analyses showed significant range expansions in all species. These expansions were accompanied in Candidula gigaxii by a shift in the realized environmental niche, the species Candidula unifasciata followed its ancestral niche during expansion while the climate changed in the area of origin and Candidula rugosiuscula tracked the ancestral environmental conditions. The significant niche shifts were associated with potentially adaptive changes of shell morphology. We propose our presented approach as a practicable framework to test hypotheses on intraspecific niche evolution. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 303–317.  相似文献   

10.
Aim Woody plants affect vegetation–environment interactions by modifying microclimate, soil moisture dynamics and carbon cycling. In examining broad‐scale patterns in terrestrial vegetation dynamics, explicit consideration of variation in the amount of woody plant cover could provide additional explanatory power that might not be available when only considering landscape‐scale climate patterns or specific vegetation assemblages. Here we evaluate the interactive influence of woody plant cover on remotely sensed vegetation dynamics across a climatic gradient along a sky island. Location The Santa Rita Mountains, Arizona, USA. Methods Using a satellite‐measured normalized difference vegetation index (NDVI) from 2000 to 2008, we conducted time‐series and regression analyses to explain the variation in functional attributes of vegetation (productivity, seasonality and phenology) related to: (1) vegetation community, (2) elevation as a proxy for climate, and (3) woody plant cover, given the effects of the other environmental variables, as an additional ecological dimension that reflects potential vegetation–environment feedbacks at the local scale. Results NDVI metrics were well explained by interactions among elevation, vegetation community and woody plant cover. After accounting for elevation and vegetation community, woody plant cover explained up to 67% of variation in NDVI metrics and, notably, clarified elevation‐ and community‐specific patterns of vegetation dynamics across the gradient. Main conclusions In addition to the environmental factors usually considered – climate, reflecting resources and constraints, and vegetation community, reflecting species composition and relative dominance – woody plant cover, a broad‐scale proxy of many vegetation–environment interactions, represents an ecological dimension that provides additional process‐related understanding of landscape‐scale patterns of vegetation function.  相似文献   

11.
The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitationeffect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent’s behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in forests.  相似文献   

12.
The spatial dynamics of range expansion is studied in dependence of temperature. The main elements population dynamics, competition and dispersal are combined in a coherent approach based on a system of coupled partial differential equations of the reaction-diffusion type. The nonlinear reaction terms comprise population dynamic models with temperature dependent reproduction rates subject to an Allee effect and mutual competition. The effect of temperature on travelling wave solutions is investigated for a one dimensional model version. One main result is the importance of the Allee effect for the crossing of regions with unsuitable habitats. The nonlinearities of the interaction terms give rise to a richness of spatio-temporal dynamic patterns. In two dimensions, the resulting non-linear initial boundary value problems are solved over geometries of heterogeneous landscapes. Geo referenced model parameters such as mean temperature and elevation are imported into the finite element tool COMSOL Multiphysics from a geographical information system. The model is applied to the range expansion of species at the scale of middle Europe.  相似文献   

13.
Scaling up population dynamics: integrating theory and data   总被引:2,自引:0,他引:2  
Melbourne BA  Chesson P 《Oecologia》2005,145(2):178-186
How to scale up from local-scale interactions to regional-scale dynamics is a critical issue in field ecology. We show how to implement a systematic approach to the problem of scaling up, using scale transition theory. Scale transition theory shows that dynamics on larger spatial scales differ from predictions based on the local dynamics alone because of an interaction between local-scale nonlinear dynamics and spatial variation in density or the environment. Based on this theory, a systematic approach to scaling up has four steps: (1) derive a model to translate the effects of local dynamics to the regional scale, and to identify key interactions between nonlinearity and spatial variation, (2) measure local-scale model parameters to determine nonlinearities at local scales, (3) measure spatial variation, and (4) combine nonlinearity and variation measures to obtain the scale transition. We illustrate the approach, with an example from benthic stream ecology of caddisflies living in riffles. By sampling from a simulated system, we show how collecting the appropriate data at local (riffle) scales to measure nonlinearities, combined with measures of spatial variation, leads to the correct inference for dynamics at the larger scale of the stream. The approach provides a way to investigate the mechanisms and consequences of changes in population dynamics with spatial scale using a relatively small amount of field data.  相似文献   

14.
Patterns of space-use by individuals are fundamental to the ecology of animal populations influencing their social organization, mating systems, demography and the spatial distribution of prey and competitors. To date, the principal method used to analyse the underlying determinants of animal home range patterns has been resource selection analysis (RSA), a spatially implicit approach that examines the relative frequencies of animal relocations in relation to landscape attributes. In this analysis, we adopt an alternative approach, using a series of mechanistic home range models to analyse observed patterns of territorial space-use by coyote packs in the heterogeneous landscape of Yellowstone National Park. Unlike RSAs, mechanistic home range models are derived from underlying correlated random walk models of individual movement behaviour, and yield spatially explicit predictions for patterns of space-use by individuals. As we show here, mechanistic home range models can be used to determine the underlying determinants of animal home range patterns, incorporating both movement responses to underlying landscape heterogeneities and the effects of behavioural interactions between individuals. Our analysis indicates that the spatial arrangement of coyote territories in Yellowstone is determined by the spatial distribution of prey resources and an avoidance response to the presence of neighbouring packs. We then show how the fitted mechanistic home range model can be used to correctly predict observed shifts in the patterns of coyote space-use in response to perturbation.  相似文献   

15.
This paper introduces the collection of contributions in this special volume on temporal and spatial patterns of vegetation dynamics. First, it is pointed out that the dynamics of any piece of vegetation, large or small, is always dependent on the degree of isolation of that piece towards its environment. Then ten types of island situation are treated ranging from very much to very little isolated: remote species-rich oceanic islands, remote species-poor islands, young big islands near a continent, small off-shore islands, emerging islands, isolated hills, landscape islands, isolated patches of vegetation, and gaps in stands of vegetation.Also, eight forms of vegetation dynamics are treated, ranging from short-term to long-term changes and involving larger and larger units: individuals, patches, communities, landscapes and vegetation regions. The forms of dynamics are fluctuation, gap dynamics, patch dynamics, cyclic succession, regeneration succession, secondary succession, primary succession, and secular succession. Each form of dynamics may occur under varying degrees of isolation.The general conclusion is that processes and patterns of vegetation dynamics cannot be generalized in any simple manner. The 20 papers collected in this volume, divergent as they are, express the complexity of vegetation dynamics.  相似文献   

16.
The dynamics of vegetation is formulated in terms of the allometric and structural properties of plants. Within the framework of a general and yet parsimonious approach, we focus on the relationship between the morphology of individual plants and the spatial organization of vegetation populations. So far, in theoretical as well as in field studies, this relationship has received only scant attention. The results reported remedy to this shortcoming. They highlight the importance of the crown/root ratio and demonstrate that the allometric relationship between this ratio and plant development plays an essential part in all matters regarding ecosystems stability under conditions of limited soil (water) resources. This allometry determines the coordinates in parameter space of a critical point that controls the conditions in which the emergence of self-organized biomass distributions is possible. We have quantified this relationship in terms of parameters that are accessible by measurement of individual plant characteristics. It is further demonstrated that, close to criticality, the dynamics of plant populations is given by a variational Swift-Hohenberg equation. The evolution of vegetation in response to increasing aridity, the conditions of gapped pattern formation and the conditions under which desertification takes place are investigated more specifically. It is shown that desertification may occur either as a local desertification process that does not affect pattern morphology in the course of its unfolding or as a gap coarsening process after the emergence of a transitory, deeply gapped pattern regime. Our results amend the commonly held interpretation associating vegetation patterns with a Turing instability. They provide a more unified understanding of vegetation self-organization within the broad context of matter order-disorder transitions.  相似文献   

17.
For trophic interactions to generate population cycles and complex spatio-temporal patterns, like travelling waves, the spatial dynamics must be matched across trophic levels. Here, we propose a spatial methodological approach for detecting such spatial match–mismatch and apply it to geometrid moths and their larval parasitoids in northern Norway, where outbreak cycles and travelling waves occur. We found clear evidence of spatial mismatch, suggesting that the spatially patterned moth cycles in this system are probably ruled by trophic interactions involving other agents than larval parasitoids.  相似文献   

18.
Models of the dynamics of large herbivore populations represent density feedbacks on the population growth rate either directly or indirectly through interactions with vegetation resources. Neither approach incorporates the spatial heterogeneity that is an essential feature of most natural environments, and modifies the population dynamics generated. This is especially true for large herbivores exploiting food resources that are rooted in space but temporally variable in quantity and quality both seasonally and annually. In this review I explore how environmental variation at different spatiotemporal scales influences the abundance of herbivore populations controlled via resources, predators or social mechanisms. Changes in abundance can be spatially disparate and dependent on different resource components at different stages of the seasonal cycle, including buffer resources restricting population crashes in extremely adverse years. GPS telemetry enables movement responses generating spatial patterns to be documented in fine spatiotemporal detail, including migration and dispersal. Models incorporating spatial heterogeneity either implicitly or explicitly are outlined, exemplifying how herbivores cope with temporal variability by exploiting spatial variability in resources and conditions. Global human dominance is generating widened climatic variation while opportunities for herbivore movements are becoming constricted. Theoretical population ecologists need to shift their focus from the workings of demographic structure towards effects of changing environmental contexts, in order to project the likely trajectories of large herbivore populations through the Anthropocene.  相似文献   

19.
内蒙古荒漠草原植被盖度的空间异质性动态分析   总被引:3,自引:0,他引:3  
颜亮  周广胜  张峰  隋兴华  平晓燕 《生态学报》2012,32(13):4017-4024
利用半方差函数分析法对内蒙古荒漠草原生长盛期(6—8月)的植被盖度时空变异特征的研究表明,荒漠草原生长盛期的植被盖度半方差函数形态符合指数模型,但函数曲线的形态和各参数在不同月份变化较大。其中,6月的植被盖度变程最大,达到100 m;7月植被盖度的半方差函数形态具有巢式等级结构;8月植被盖度的变程最小,仅为15 m,但空间变异程度最高。3个月的结构比介于72%—85%,具有较强的空间自相关。各向异性分析表明,6月植被盖度在135°方向的半方差函数值明显低于其它3个方向(0°、45°、90°),具有各向异性特征;而7月和8月植被盖度的各向异性比接近于1,表现为各向同性。研究结果表明,荒漠草原植被盖度空间异质性的时间动态不容忽视,在野外采样或制图时,要根据时间合理控制采样范围。  相似文献   

20.
Because species respond differently to habitat boundaries and spatial overlap affects encounter rates, edge responses should be strong determinants of spatial patterns of species interactions. In the Caribbean, mongooses (Herpestes javanicus) prey on hawksbill sea turtle (Eretmochelys imbricata) eggs. Turtles nest in both open sand and vegetation patches, with a peak in nest abundance near the boundary between the two microhabitats; mongooses rarely leave vegetation. Using both artificial nests and hawksbill nesting data, we examined how the edge responses of these species predict the spatial patterns of nest mortality. Predation risk was strongly related to mongoose abundance but was not affected by nest density or habitat type. The product of predator and prey edge response functions accurately described the observed pattern of total prey mortality. Hawksbill preference for vegetation edge becomes an ecological trap in the presence of mongooses. This is the first study to predict patterns of predation directly from continuous edge response functions of interacting species, establishing a link between models of edge response and species interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号