首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: The relationship between carbon‐13 in soil organic matter and C3 and C4 plant abundance is complicated because of differential productivity, litter fall and decomposition. As a result, applying a mass balance equation to δ13C data from soils cannot be used to infer past C3 and C4 plant abundance; only the proportion of carbon derived from C3 and C4 plants can be estimated. In this paper, we compare δ13C of surface soil samples with vegetation data, in order to establish whether the ratio of C3:C4 plants (rather than the proportion of carbon from C3 and C4 plants) can be inferred from soil δ13C. Location: The Tsavo National Park, in southeastern Kenya. Methods: We compare vegetation data with δ13C of organic matter in surface soil samples and derive regression equations relating the δ13C of soil organic matter to C3:C4 plant abundance. We use these equations to interpret δ13C data from soil profiles in terms of changes in inferred C3:C4 plant ratio. We compare our method of interpretation with that derived from a mass balance approach. Results: There was a statistically significant, linear relationship between the δ13C of organic matter in surface soil samples and the natural logarithm of the ratio of C3:C4 plants in the 100m2 surrounding the soil sample. Conclusions: We suggest that interpretation of δ13C data from organic matter in soil profiles can be improved by comparing vegetation surveys with δ13C of organic matter in surface soil samples. Our results suggest that past C3 plant abundance might be under‐estimated if a mass balance approach is used.  相似文献   

2.
Stable isotope ratios of pedogenic carbonate and organic matter were measured in a prairie-transition-forest soil biosequence near Ames, Iowa to determine the vegetation succession. The modern vegetation is dominated by non-native C3 plants which have been introduced by agricultural practices. The 13C values of soil organic matter from the prairie and forest endmembers indicate C4 and C3 dominated ecosystems, respectively, during the accumulation of soil organic matter. Pedogenic carbonate from all soils, including rare pedogenic carbonate from the forested soil, has an average 13C of-2.0, indicating that the carbonate formed under a C4 vegetation. These results indicate that the ecosystem was a C4-dominated prairie and therefore suggest a recent arrival of forests and other C3 plants in the area. This study also implies that the primary features of the transitional Lester soil series, which has soil properties intermediate between Alfisols and Molisolls, formed under prairie conditions and were overprinted by an invading forest.  相似文献   

3.
Measurements of the organic carbon inventory, its stable isotopic composition and radiocarbon content were used to deduce vegetation history from two soil profiles in arboreal and grassy savanna ecotones in the Brazilian Pantanal. The Pantanal is a large floodplain area with grass-dominated lowlands subject to seasonal flooding, and arboreal savanna uplands which are only rarely flooded. Organic carbon inventories were lower in the grassy savanna site than in the upland arboreal savanna site, with carbon decreasing exponentially with depth from the surface in both profiles. Changes in 13C of soil organic matter (SOM) with depth differed markedly between the two sites. Differences in surface SOM 13C values reflect the change from C3 to C4 plants between the sites, as confirmed by measurements of 13C of vegetation and the soil surface along a transect between the upland closed-canopy forest and lowland grassy savanna. Changes of 13C in SOM with depth at both sites are larger than the 3–4 per mil increases expected from fractionation associated with organic matter decomposition. We interpret these as recording past changes in the relative abundance of C3 and C4 plants at these sites. Mass balances with 14C and 13C suggest that past vegetational changes from C3 to C4 plants in the grassy savanna, and in the deeper part of the arboreal savanna, occurred between 4600 and 11 400 BP, when major climatic changes were also observed in several places of the South American Continent. The change from C4 to C3, observed only in the upper part of the arboreal savanna, was much more recent (1400 BP), and was probably caused by a local change in the flooding regime.  相似文献   

4.
胡运迪  赵敏  鲍乾  李栋  魏榆  马松  曾广能 《生态学报》2023,43(1):327-338
土地利用变化作为全球气候变化研究的重要内容之一,对土壤CO2的排放具有重要影响。岩溶区石漠化治理过程中植被恢复伴随着土地利用方式的转变,其对土壤CO2排放的影响有待进一步研究。基于控制性实验,以土壤、岩溶含水介质初始条件相同,仅土地利用方式不同的贵州普定沙湾模拟试验场为研究对象,通过1年的土壤CO2浓度和通量数据,研究岩溶区不同土地利用方式下土壤CO2的排放规律及其影响因素。结果表明:(1)土壤CO2的浓度和通量具有明显的季节变化规律,不同季节下的土壤CO2通量呈现昼夜变化规律,温度和降雨影响着土壤CO2的排放,前者可促进排放量,后者可抑制排放量,且不同土地利用方式受影响的程度不同;(2)耕作活动也会影响土壤CO2的排放,耕作使得土壤变得松散,加上岩溶区下伏基岩的溶蚀作用,增加了土壤CO2向含水层的扩散,导致春季耕地表现为负通量;(3)不同土地利用方式下土壤CO2的年排...  相似文献   

5.
胡会峰  刘国华 《生态学报》2013,33(4):1212-1218
采用时空替代法,选取岷江上游大沟流域内不同恢复时期(12、18、25、35a)的人工油松林为研究对象,研究了植被恢复过程中土壤理化性质及有机碳含量的变化特征,同时探讨了它们之间的相互关系.研究结果表明沿恢复梯度,土壤质量得到了改善,主要表现为土壤粘粒含量、比表面积、有机质含量显著增加,土壤粉粒含量和pH值则显著下降.土壤有机质与土壤粘粒和比表面积呈显著正相关,与土壤容重呈显著负相关.此外,土壤有机碳含量沿恢复梯度显著增加,0-50 cm内土壤有机碳含量从5.59 kg/m2增加到12.64 kg/m2,土壤年平均固碳速率为0.31 kg/m2.  相似文献   

6.
The restinga comprises coastal vegetation formations which dominate the Atlantic seaboard of Brazil. Exposed sand ridges and associated lagoon systems have poorly developed soils subject to pronounced water deficits. Distinct vegetation zones support a high diversity of life forms, and a comparative study has been undertaken to investigate interactions between degree of exposure, nutrient supply and photosynthetic pathway (C3, or CAM) in selected species across the restinga. A number of species occurring throughout the restinga were chosen as representative species of different life forms, comprising C3 pioneer shrubs (Eugenia rotundifolia and Erythroxylum ovalifolium), impounding (tank) terrestrial bromeliad (Neoregelia cruenta: CAM) and the atmospheric epiphyte (Tillandsia stricta: CAM). Comparisons of plant and soil nutrient composition, and airborne deposition were conducted for each zone. Soil nutrient content and organic matter were closely related, reaching a maximum in zone 4, the seaward face of the inner dune. Salt concentration in leaves was independent of atmospheric deposition for the terrestrial species, in contrast to the atmospheric epiphyte T. stricta. In the slack area, vegetation formed characteristic “islands” with the soil beneath enriched in nutrients, suggesting a complex interplay between plants and soil during the development of vegetation succession. Here, two additional trees were investigated, C3 and CAM members of the Clusiaceae, respectively Clusia lanceolata and C. fluminensis. Stable isotope composition of nitrogen (δ15N) was generally more negative (depleted in 15N) in plants with low total nitrogen content. This was exemplified by the atmospheric bromeliad, T. stricta, with an N content of 2.91 g/kg and δ15N of ?12.3 per mil. Stable isotopes of carbon (δ13C) were used to identify the distribution of photosynthetic pathways, and while the majority of bromeliads and orchids were CAM, analysis of the soil organic matter suggested that C3 plants made the major contribution in each zone of the restinga. Since δ13C of plant material also suggested that water supply was optimal in zone 4, we conclude that succession and high diversity in the restinga is dependent on exposure, edaphic factors, and perhaps a critical mass of vegetation required to stabilize nutrient relations of the system.  相似文献   

7.
In southeastern Arizona, Prosopis juliflora (Swartz) DC. and Quercus emoryi Torr. are the dominant woody species at grassland/woodland boundaries. The stability of the grassland/woodland boundary in this region has been questioned, although there is no direct evidence to confirm that woodland is encroaching into grassland or vice versa. We used stable carbon isotope analysis of soil organic matter to investigate the direction and magnitude of vegetation change along this ecotone. 13C values of soil organic matter and roots along the ecotone indicated that both dominant woody species (C3) are recent components of former grasslands (C4), consistent with other reports of recent increases in woody plant abundance in grasslands and savannas throughout the world. Data on root biomass and soil organic matter suggest that this increase in woody plant abundance in grasslands and savannas may increase carbon storage in these ecosystems, with implications for the global carbon cycle.  相似文献   

8.

Aim

Millennial-scale biogeographic changes are well understood in many parts of the world, but little is known about long-term vegetation dynamics in subtropical regions. Here we investigate shifts in C3/C4 plant abundance occurred in central Argentina during the past few millennia

Methods

We determined present day soil organic matter ??13C signatures of grasslands, shrublands and woodlands, containing different mixtures of C3 and C4 plants. We measured past changes in the relative cover of C3/C4 plants by comparing ??13C values in soil profiles with present day ??13C signatures. We analyzed 14C activity in soil depths that showed major changes in vegetation.

Results

Present day relative cover of C3/C4 plants determines whole ecosystem ??13C signatures integrated as litter and superficial soil organic matter (R2?=?0.78; p?<?0.01). Deeper soils show a consistent shift in ??13C, indicating a continuous replacement of C4 by C3 plants since 3,870 (±210) YBP. During this period, the relative abundance of C3 plants increased 32% (average across sites) with significant changes being observed in all studied ecosystems.

Conclusions

Our results show that C4 species were more abundant in the past, but C3 species became dominant during the late Holocene. We identified increases in the relative C3/C4 cover in grasslands, shrublands and woodlands, suggesting a physiological basis for changes in vegetation. The replacement of C4 by C3 plants coincided with changes in climate towards colder and wetter conditions and could represent a climatically driven shift in the C4 species optimum range.  相似文献   

9.
Soil carbon distribution with depth, stable carbon isotope ratios in soil organic matter and their changes as a consequence of the presence of legume were studied in three 12-year-old tropical pastures (grass alone —Brachiaria decumbens (C4), legume alone —Pueraria phaseoloides (C3) and grass + legume) on an Oxisol in Colombia. The objective of this study was to determine the changes that occurred in the13C isotope composition of soil from a grass + legume pasture that was established by cultivation of a native savanna dominated by C4 vegetation. The13C natural abundance technique was used to estimate the amount of soil organic carbon originating from the legume. Up to 29% of the organic carbon in soil of the grass + legume pasture was estimated to be derived from legume residues in the top 0–2-cm soil depth, which decreased to 7% at 8–10 cm depth. Improvements in soil fertility resulting from the soil organic carbon originated from legume residues were measured as increased potential rates of nitrogen mineralization and increased yields of rice in a subsequent crop after the grass + legume pasture compared with the grass-only pasture. We conclude that the13C natural abundance technique may help to predict the improvements in soil quality in terms of fertility resulting from the presence of a forage legume (C3) in a predominantly C4 grass pasture.  相似文献   

10.
We examined the effects of elevated atmospheric CO2 on soil carbon decomposition in an experimental anaerobic wetland system. Pots containing either bare C4‐derived soil or the C3 sedge Scirpus olneyi planted in C4‐derived soil were incubated in greenhouse chambers at either ambient or twice‐ambient atmospheric CO2. We measured CO2 flux from each pot, quantified soil organic matter (SOM) mineralization using δ13C, and determined root and shoot biomass. SOM mineralization increased in response to elevated CO2 by 83–218% (P<0.0001). In addition, soil redox potential was significantly and positively correlated with root biomass (P= 0.003). Our results (1) show that there is a positive feedback between elevated atmospheric CO2 concentrations and wetland SOM decomposition and (2) suggest that this process is mediated by the release of oxygen from the roots of wetland plants. Because this feedback may occur in any wetland system, including peatlands, these results suggest a limitation on the size of the carbon sink presented by anaerobic wetland soils in a future elevated‐CO2 atmosphere.  相似文献   

11.
Abstract. We document the potential for using carbon isotopes in both soil organic matter (SOM) and grass phytoliths in soil to increase the temporal and taxonomic resolutions of long term vegetation dynamics. Carbon isotope values from both SOM and phytoliths are expected to describe both the age of material through 14C dating, and the photosynthetic pathway of the source plant material through ratios of 12C/13C. Taxonomic resolution is increased because the phytoliths examined are specific to grasses, whereas the SOM reflects the contribution of all the vegetation. Temporal resolution is increased because phytoliths are less mobile in the soil profile than SOM, and can therefore provide older dates from the same soil depth. Our results, from a desert grassland site in southwestern North America, largely confirm these expectations, and show that C4 species have dominated the grass composition for the last 8000 yr, C3 non‐grass vegetation increased about 100–350 yrBP, and no significant C3 grass or non‐grass vegetation existed between 350–2000 yr BP.  相似文献   

12.
宋敏  彭晚霞  邹冬生  曾馥平  杜虎  鹿士杨 《生态学报》2012,32(19):6259-6269
基于动态监测样地(200 m×40 m)的网格(10 m×10 m)取样,以农作区为对照,用地统计学方法研究了喀斯特峰丛洼地人工林、次生林和原生林3类典型森林生态系统表层土壤(0—15 cm)有机质的空间变异,通过主成分分析和相关分析,探讨了其生态学过程和机制。结果表明:喀斯特峰丛洼地土壤有机质很高,沿着农作区-人工林-次生林-原生林的恢复梯度,土壤有机质显著提高,变异系数逐步增大;农作区和3类森林土壤表层有机质均具有良好的空间自相关性;农作区试验半变异函数C0/(C0+C)值为26.5%,呈中等程度的空间相关性;3类森林的C0/(C0+C)值为9.0%—22.6%,呈强烈的空间相关性;农作区和人工林土壤有机质呈单峰分布,次生林呈凹型分布,原生林呈凸型分布;不同森林的主导因子不同,农作区的主导因子为主要土壤养分,人工林为地形和物种多样性,次生林为森林结构和物种多样性,原生林为地形和物种多样性,且同一因子在不同森林与土壤表层有机质的正负作用关系和相关程度也不同。因此,农作区和3类森林应根据其土壤表层有机质的空间变异及主要影响因子制定相应的固碳措施。  相似文献   

13.
De Kovel  C.G. F  Van Mierlo  A..E.M.  Wilms  Y.J.O.  Berendse  F. 《Plant Ecology》2000,148(1):43-50
We studied vegetation and soil development during primary succession in an inland drift sand area in the Netherlands. We compared five sites at which primary succession had started at different moments in the past, respectively 0, 10, 43 and 121 years ago, and a site at which succession had not yet started. In the three younger sites the vegetation was herbaceous, whereas in the two older sites a pine forest had formed. Forest formation was accompanied by the development of an FH-layer in the soil, an increase in the amount of soil organic matter, and an increase in nitrogen mineralisation rate from 1.9 to 18 g N m–2 yr–1. Soil moisture content also increased, whereas pH showed a steady decrease with site age. The vegetation changed from a herbaceous vegetation dominated by mosses and lichens and the grass species Corynephorus canescens and Festuca ovina towards a pine forest with an understorey vegetation dominated by Deschampsia flexuosa and, at the oldest site, with dwarf shrubs Empetrum nigrum and Vaccinium myrtillus. At the same time the total amounts of carbon and nitrogen of the ecosystem increased, with a relatively stronger increase of the carbon pool. The establishment of trees during succession greatly affects the dynamics of the ecosystem, especially its carbon dynamics.  相似文献   

14.
In the context of land use change, the dynamics of the water extractable organic carbon (WEOC) pool and CO2 production were studied in soil from a native oak-beech forest and a Douglas fir plantation during a 98-day incubation at a range of temperatures from 8°C to 28°C. The soil organic carbon, water contents and mineralisation rates of soil samples from the 0–5 cm layer were higher in the native forest than in the Douglas fir plantation. During incubation, a temperature-dependent shift in the δ13C of respired CO2 was observed, suggesting that different carbon compounds were mineralised at different temperatures. The initial size of the WEOC pool was not affected by forest type. The WEOC pool size of samples from the native forest did not change consistently over time whereas it decreased significantly in samples from the Douglas plantation, irrespective of soil temperature. No clear changes in the δ13C values of the WEOC were observed, irrespective of soil origin. The fate of the WEOC, independent of soil organic carbon content or mineralisation rates, appeared to relate to forest types. Replacement of native oak-beech forest with Douglas fir plantation impacts carbon input to the soil, mineralisation rates and production of dissolved organic carbon.  相似文献   

15.
We studied the effect of mountain grassland afforestation with conifer trees (Pinus sylvestris, Picea abies and Pinus cembra) on soil organic matter (SOM) cycling and carbon (C) isotopic composition in two contrasting climate areas using a regional approach. Seventeen paired sites (each containing at least 40 years prior afforested and grassland plots) were investigated in the mountains of Central Spain and Western Austria. Topsoil CO2 effluxes were monitored under standardized conditions for six months as a proxy for soil organic carbon (SOC) mineralisation. The bulk C and nitrogen (N) concentrations and their isotopic composition in the soil and in the plants were assessed. The soil C:N ratio was consistently greater after afforestation in both regions, which in Spain was caused by a significant decrease in N concentration. No consistent effect was found on mineralisation rates due to vegetation change. Afforestation produced a more consistent soil 13C enrichment in the Spanish than in the Austrian sites. Our work strongly suggests that increasing altitude in Mediterranean mountain grasslands alleviates water limitation, favouring both plant growth and SOM decomposition, and ultimately accelerating C cycling. In contrast, temperate grassland areas at high altitudes were associated with severe temperature limitations, which constrained SOM transformation processes. In spite of the impact of afforestation on soil biogeochemical processes, C concentrations were marginally affected. We therefore conclude that grassland conversion to coniferous forests does not enhanced C sequestration in the mineral soil, for at least 40 years after land-use change.  相似文献   

16.
Soil labile organic carbon and soil enzymes play important roles in the carbon cycle of coastal wetlands that have high organic carbon accumulation rates. Soils under three vegetations (Phragmites australis, Spartina alterniflora, and Scirpusm mariqueter) as well as bare mudflat in Hangzhou Bay wetland of China were collected seasonally. Seasonal dynamics and correlations of soil labile organic carbon fractions and soil enzyme activities were analyzed. The results showed that there were significant differences among vegetation types in the contents of soil organic carbon (SOC) and dissolved organic carbon (DOC), excepting for that of microbial biomass carbon (MBC). The P. australis soil was with the highest content of both SOC (7.86 g kg-1) and DOC (306 mg kg-1), while the S. mariqueter soil was with the lowest content of SOC (6.83 g kg-1), and the bare mudflat was with the lowest content of DOC (270 mg kg-1). Soil enzyme activities were significantly different among vegetation types except for urease. The P. australis had the highest annual average activity of alkaline phosphomonoesterase (21.4 mg kg-1 h-1), and the S. alterniflora had the highest annual average activities of β-glycosidase (4.10 mg kg-1 h-1) and invertase (9.81mg g-1 24h-1); however, the bare mudflat had the lowest activities of alkaline phosphomonoesterase (16.2 mg kg-1 h-1), β-glycosidase (2.87 mg kg-1 h-1), and invertase (8.02 mg g-1 24h-1). Analysis also showed that the soil labile organic carbon fractions and soil enzyme activities had distinct seasonal dynamics. In addition, the soil MBC content was significantly correlated with the activities of urease and β-glucosidase. The DOC content was significantly correlated with the activities of urease, alkaline phosphomonoesterase, and invertase. The results indicated that vegetation type is an important factor influencing the spatial-temporal variation of soil enzyme activities and labile organic carbon in coastal wetlands.  相似文献   

17.
The ecological impact of sewage discharges to a mangrove wetland in Futian National Nature Reserve, the People's Republic of China was assessed by comparing the plant community, plant growth and nutrient status of soils and vegetation of a site treated with settled municipal wastewater (Site A) with those of a control adjacent site (Site B) which did not receive sewage. During the one year study, the total and available N and P, and organic carbon concentrations of mangrove soils in Site A did not significantly differ from those of Site B. In both sites, the soil organic C, total N, NH4 }-N and total P content exhibited a descending trend from landward to seaward regions, with the lowest measurements obtained from the most foreshore location. Seasonal variation in N content of soil samples was more obvious than any difference between wastewater treated and the control sites. The soil N content was lower in spring and summer. This was attributed to the higher temperature in these seasons which facilitated degradation of organic matter and absorption of nitrogen by the plants for growth. No significant difference in plant community structure, plant growth (in terms of tree height and diameter) and biomass was found between Sites A and B. Leaf samples of the two dominant plant species, Kandelia candel and Aegiceras corniculatum collected from Site A had comparable content of organic carbon, N, P and K to those Site B. These preliminary results indicated that the discharge of a total volume of 2600 m3 municipal wastewater to an area of 1800 m2 mangrove plants over the period of a year did not produce any apparent impact on growth of the plants. The soils and plant leaves of Site A were not contaminated, in terms of nutrient content, by the discharged sewage.  相似文献   

18.
The biological transformation of P in soil   总被引:5,自引:0,他引:5  
K. R. Tate 《Plant and Soil》1984,76(1-3):245-256
Summary Organic forms of soil phosphorus (Po) are an important source of available P for plants following mineralisation. The rates and pathways of P through soil organic matter are, however, poorly understood when compared to physco-chemical aspects of the P cycle. The essential role of soil microorganisms as a labile resercoir of P, confirmed experimentally and in modelling studies, has recently led to the development of methods for measuring thier P content. Incorporation in a new P fractionation scheme of these measurements with estimates of Pi and Po fractions that vary in the exten toftheir availability to plants has enabled the dynamics of short-term soil P transformations to be investigated in relation to long-term changes observed in the field.Different types of soil P compounds that minearlise at different rates can now be measured directly in extracts by31P-nuclear magnetic resonance. Orthophosphate diesters, including phospholipids and nucleic acids, are the most readily mineralised group of these compounds. However, mineralisation rates rather than the amounts of types of Po in soil ultimately control P availability to plants. These rates are influenced by a number of soil and site factors, as a sensitive new technique using [32P] RNA has recently shown.These recent developments reflect a more holistic approach to investigation of the soil P cycle than in the past, which should lead to improved fertilizer management practices.Introductory lecture  相似文献   

19.
The following arguments are outlined and then illustrated by the response of the Hurley Pasture Model to [CO2] doubling in the climate of southern Britain. 1. The growth of N-limited vegetation is determined by the concentration of N in the soil mineral N pools and high turnover rates of these pools (i.e., large input and output fluxes) contribute positively to growth. 2. The size and turnover rates of the soil mineral N pools are determined overwhelmingly by N cycling into all forms of organic matter (plants, animals, soil biomass and soil organic matter — `immobilisation' in a broad sense) and back again by mineralisation. Annual system N gains (by N2 fixation and atmospheric deposition) and losses (by leaching, volatilisation, nitrification and denitrification) are small by comparison. 3. Elevated [CO2] enriches the organic matter in plants and soils with C, which leads directly to increased removal of N from the soil mineral N pools into plant biomass, soil biomass and soil organic matter (SOM). ‘Immobilisation’ in the broad sense then exceeds mineralisation. This is a transient state and as long as it exists the soil mineral N pools are depleted, N gaseous and leaching losses are reduced and the ecosystem gains N. Thus, net immobilisation gradually increases the N status of the ecosystem. 4. At the same time, elevated [CO2] increases symbiotic and non-symbiotic N2 fixation. Thus, more N is gained each year as well as less lost. Effectively, the extra C fixed in elevated [CO2] is used to capture and retain more N and so the N cycle tracks the C cycle. 5. However, the amount of extra N fixed and retained by the ecosystem each year will always be small (ca. 5–10 kg N ha-1 yr-1) compared with amount of N in the immobilisation-mineralisation cycle (ca. 1000 kg N ha-1 yr-1). Consequently, the ecosystem can take decades to centuries to gear up to a new equilibrium higher-N state. 6. The extent and timescale of the depletion of the mineral N pools in elevated [CO2] depends on the N status of the system and the magnitude of the overall system N gains and losses. Small changes in the large immobilisation—mineralisation cycle have large effects on the small mineral N pools. Consequently, it is possible to obtain a variety of growth responses within 1–10 year experiments. Ironically, ecosystem models — artificial constructs — may be the best or only way of determining what is happening in the real world. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The 13C signature of organic carbon in estuarine bottom sediment in Louisiana Barataria Basin was used for estimating carbon flux from adjacent marsh. The stable carbon isotope composition of plants, soils and sediments from the basin were determined. The 13C content of marsh vegetation ranged from -26.3 to -27.8% for C3 freshwater vegetation in the upper basin to -13.0 to -13.3% for C4 vegetation in the lower basin. The 13C content of the highly organic marsh soils were similar to 13C content of vegetation present. The 13C content of organic carbon from bottom sediment of open water bodies ranged from 27.3 in the upper basin (freshwater) to 16.4 in bottom sediment of salt marsh ponds. The13C signature of organic carbon in bottom sediment from saline regions corresponded to the size of the body of water. The smaller salt marsh ponds contain sediment with 13C values close to that of the C4 plantSpartina alterniflora. Results suggest that phytoplankton rather thanSpartina alterniffora is the likely organic source in bottom sediment of the larger bay near the coast (e.g. Caminada Bay).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号