首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Oecologica》2001,22(2):129-138
The functional variability in leaf angle distribution within the canopy was analysed with respect to regulation of light interception and photoprotection. Leaf orientation strongly determined the maximum photochemical efficiency of PSII (Fv/Fm) during summer: horizontal leaves were highly photoinhibited whereas vertical leaf orientation protected the leaves from severe photoinhibition. The importance of leaf orientation within the canopy was analysed in two Mediterranean macchia species with distinct strategies for drought and photoinhibition avoidance during summer. The semi-deciduous species (Cistus monspeliensis) exhibited strong seasonal but minimal spatial variability in leaf orientation. Reversible structural regulation of light interception by vertical leaf orientation during summer protected the leaves from severe photoinhibition. The evergreen sclerophyll (Quercus coccifera) exhibited high spatial variability in leaf angle distribution throughout the year and was less susceptible to photoinhibition. The importance of both strategies for plant primary production was analysed with a three-dimensional canopy photoinhibition model (CANO-PI). Simulations indicated that high variability in leaf angle orientation in Q. coccifera resulted in whole-plant carbon gain during the summer, which was 94 % of the maximum rate achieved by theoretical homogeneous leaf orientations. The high spatial variability in leaf angle orientation may be an effective compromise between efficient light harvesting and avoidance of excessive radiation in evergreen plants and may optimize annual primary production. Whole plant photosynthesis was strongly reduced by water stress and photoinhibition in C. monspeliensis; however, the simulations indicated that growth-related structural regulation of light interception served as an important protection against photoinhibitory reduction in whole-plant carbon gain.  相似文献   

2.
Karavatas  S.  Manetas  Y. 《Photosynthetica》1999,36(1-2):41-49
Photochemical efficiency of photosystem 2 (PS2), assessed from in situ chlorophyll (Chl) fluorescence measurements, was seasonally monitored in five evergreen sclerophyll and five malacophyllous drought semi-deciduous species, co-occurring in the same Mediterranean field site. In evergreen sclerophylls, a considerable drop in the variable (Fv) to maximum (Fm) Chl fluorescence ratio coincided with the lowest winter temperatures, indicating low PS2 efficiency during this period. Summer drought caused a comparatively slight decrease in Fv/Fm and only in three of the five evergreen sclerophyll species tested. In drought semi-deciduous shrubs, the winter drop in Fv/Fm was much less conspicuous. During the summer, and in spite of the severe and prolonged desiccation of their malacophyllous leaves, Fv/Fm was maintained high and only in one species the PS2 efficiency was transiently suppressed, when the leaf relative water content became lower than 30 %. Thus evergreen sclerophylls are more prone to photoinhibition by low winter temperatures, while the sensitivity of drought semi-deciduals depends on the extent and duration of summer drought. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

3.
The effects of ambient levels of ozone and summer drought were assessed on a poplar clone (Populus maximowiczii Henry X P. × berolinensis Dippel — Oxford clone) in an open top chamber experiment carried out at the Curno facilities (Northern Italy). Chlorophyll (Chl) a fluorescence parameters (from both modulated and direct fluorescence) were assessed at different hours of the day (predawn, morning, midday, afternoon, and evening), from June to August 2008. This paper compares the results from predawn (PD, before sunrise) and afternoon (AN, in full sunlight) measurements, in order to evaluate the role of high sunlight as a factor influencing responses to ozone stress. Sunlight affected the maximum quantum yield of primary photochemistry (decrease of Fv/Fm) thus indicating photoinhibition. The effective quantum yield (ΦPSII) and the photochemical quenching (qP) were enhanced in the afternoon with respect to the predawn, whereas the nonphotochemical quenching (NPQ) was reduced. The effect of ozone was detected with fluorescence on well watered plants in the first week of July, before the onset of visible symptoms. As far as Fv/Fm are concerned, the differences between ozone-treated and control plants were statistically significant in the predawn, but not in the afternoon. Ozone exerted only minor effects on drought exposed plants because of the reduced stomatal ozone uptake, but effects on the IP phase of the fluorescence transient were observed also in drought-stressed plants.  相似文献   

4.
Hemiepiphytic Ficus species exhibit more conservative water use strategy and are more drought-tolerant compared with their non-hemiepiphytic congeners, but a difference in the response of photosystem I (PSI) and photosystem II (PSII) to drought stress has not been documented to date. The enhancement of non-photochemical quenching (NPQ) and cyclic electron flow (CEF) have been identified as important mechanisms that protect the photosystems under drought conditions. Using the hemiepiphytic Ficus tinctoria and the non-hemiepiphytic Ficus racemosa, we studied the water status and the electron fluxes through PSI and PSII under seasonal water stress. Our results clearly indicated that the decline in the leaf predawn water potential (ψpd), the maximum photosynthetic rate (Amax) and the predawn maximum quantum yield of PSII (Fv/Fm) were more pronounced in F. racemosa than in F. tinctoria at peak drought. The Fv/Fm of F. racemosa was reduced to 0.69, indicating net photoinhibition of PSII. Concomitantly, the maximal photo-oxidizable P700 (Pm) decreased significantly in F. racemosa but remained stable in F. tinctoria. The fraction of non-photochemical quenching [Y(NPQ)] and the ratio of effective quantum yield of PSI to PSII [Y(I)/Y(II)] increased for both Ficus species at peak drought, with a stronger increase in F. racemosa. These results indicated that the enhancement of NPQ and the activation of CEF contributed to the photoprotection of PSI and PSII for both Ficus species under seasonal drought, particularly for F. racemosa.  相似文献   

5.
  • The potential resilience of shrub species to environmental change deserves attention in those areas threatened by climate change, such as the Mediterranean Basin. We asked if leaves produced under different climate conditions through the winter season to spring can highlight the leaf traits involved in determining potential resilience of three Cistus spp. to changing environmental conditions and to what extent intraspecific differences affect such a response.
  • We analysed carbon assimilation, maximum quantum efficiency of PSII photochemistry (Fv/Fm) and leaf morphological control of the photosynthetic process in leaves formed through the winter season into spring in C. creticus subsp. eriocephalus (CE), C. salvifolius (CS) and C. monspeliensis (CM) grown from seed of different provenances under common garden conditions.
  • Intraspecific differences were found in Fv/Fm for CE and CS. Carbon assimilation‐related parameters were not affected by provenance. Moreover, our analysis highlighted that the functional relationships investigated can follow seasonal changes and revealed patterns originating from species‐specific differences in LMA arising during the favourable period.
  • Cistus spp. have great ability to modify the structure and function of their leaves in the mid‐term in order to cope with changing environmental conditions. The Fv/Fm response to chilling reveals that susceptibility to photoinhibition is a trait under selection in Cistus species. Concerning carbon assimilation, differing ability to control stomatal opening was highlighted between species. Moreover, seasonal changes of the functional relationships investigated can have predictable consequences on species leaf turnover strategies.
  相似文献   

6.
The sudden increase in irradiance after canopy disturbance in primary forest together with the accompanying increase in leaf temperatures is known to cause photoinhibition in shade acclimated foliage of understorey plants. We hypothesized that there is species specific variation among understorey saplings in the magnitude of photoinhibition in response to gap creation, which is related to their requirement for overstorey disturbance. Eleven more or less circular gaps were created varying in size from 60 up to 1459 m2. Photoinhibition was assessed by determining predawn and midday Fv/Fm using chlorophyll fluorescence at two occasions during the first 3 weeks after creation of the gaps. The light environment was assessed using hemispherical photography. Five species that occurred in sufficient numbers in the understorey after gap creation were measured. They all showed an increase of photoinhibition with increasing gap size. Variation in exposure to direct sunlight within gaps contributed also to variation in photoinhibition. Dynamic photoinhibition, the overnight increase in Fv/Fm, was about 20% of total photoinhibition as measured at midday. The species responded quantitatively different. Oxandra asbeckii was most sensitive as evident from a decrease of predawn Fv/Fm from 0.79 in the understorey of undisturbed forest to 0.70 in the smallest and further to 0.41 in the largest gaps. Catostemma fragrans, the least sensitive species showed hardly any photoinhibition in the smallest gaps and less in the largest ones, whereas Lecythis concertiflora, Licania heteromorpha, and Chlorocardium rodiei had intermediate responses. Species rank order in sensitivity to photoinhibition was maintained across the whole range of gap sizes. The relationship between sensitivity to photoinhibition and species-specific gap size preference for regeneration is discussed.  相似文献   

7.
We studied the leaf structural, water status, and fast fluorescence responses of two palms, Socratea exorrhiza and Scheelea zonensis, under natural dry season conditions in a clearing (high light [HL] palms) and the forest understory (low light [LL] palms) on Barro Colorado Island, Panama. HL-Socratea leaves were more shade-adapted, less xeromorphic, and more strongly affected by drought than HL-Scheelea. Fv/Fm (the ratio of variable to maximum chlorophyll fluorescence) and t½ (the half-rise time of Fm) was lower in HL-leaves of both species, indicating photoinhibition. In HL-Scheelea, the light-induced reduction of Fv/Fm was much less than in HL-Socratea, and Fv/Fm recovered completely overnight. Patterns of relative water content, specific leaf dry weight, stable carbon isotope composition, and leaf conductance suggest that increased drought resistance in Scheelea reduces susceptibility to photoinhibition. An increase in Fo indicated the inactivation of PSII reaction centers in HL-Socratea. The very low chlorophyll a/b ratio and alterations in chloroplast ultrastructure in HL-Socratea are consistent with photoinhibition. Under LL, the species showed no appreciable interspecific differences in chlorophyll fluorescence. Excess light leads to low values of Fv/Fm in HL-plants relative to LL-plants on both leaf surfaces, particularly on the lower surface, due to a decrease of Fm in both surfaces and an increase in F., of lower surface. For both species, Fo for the lower surfaces of HL-plants was higher and t½ was markedly lower than for the upper surface, as is typical for shade-adapted leaves. Xeromorphic leaf structure may reduce susceptibility to photoinhibition during the dry season. Drought-enhanced photoinhibition could limit the ability of some species to exploit treefall gaps.  相似文献   

8.
Gas exchange and chlorophyll fluorescence techniques were used to evaluate the acclimation capacity of the schlerophyll shrub Heteromeles arbutifolia M. Roem. to the multiple co-occurring summer stresses of the California chaparral. We examined the influence of water, heat and high light stresses on the carbon gain and survival of sun and shade seedlings via a factorial experiment involving a slow drying cycle applied to plants grown outdoors during the summer. The photochemical efficiency of PSII exhibited a diurnal, transient decrease (δF/Fm′) and a chronic decrease or photoinhibition (Fv/Fm) in plants exposed to full sunlight. Water stress enhanced both transient decreases of δF/Fm’and photoinhibition. Effects of decreased δF/Fm’and Fv/Fm on carbon gain were observed only in well-watered plants since in water-stressed plants they were overidden by stomatal closure. Reductions in photochemical efficiency and stomatal conductance were observed in all plants exposed to full sunlight, even in those that were well-watered. This suggested that H. arbutifolia sacrificed carbon gain for water conservation and photoprotection (both structurally via shoot architecture and physiologically via down-regulation) and that this response was triggered by a hot and dry atmosphere together with high PFD, before severe water, heat or high PFD stresses occur. We found fast adaptive adjustments of the thermal stability of PSII (diurnal changes) and a superimposed long-term acclimation (days to weeks) to high leaf temperatures. Water stress enhanced resistance of PSII to high temperatures both in the dark and over a wide range of PFD. Low PFD protected photochemical activity against inactivation by heat while high PFD exacerbated damage of PSII by heat. The greater interception of radiation by horizontally restrained leaves relative to the steep leaves of sun-acclimated plants caused photoinhibition and increased leaf temperature. When transpirational cooling was decreased by water stress, leaf temperature surpassed the limits of chloroplast thermostability. The remarkable acclimation of water-stressed plants to high leaf temperatures proved insufficient for the semi-natural environmental conditions of the experiment. Summer stresses characteristic of Mediterranean-type climates (high leaf temperatures in particular) are a potential limiting factor for seedling survival in H. arbutifolia, especially for shade seedlings lacking the crucial structural photoprotection provided by steep leaf angles.  相似文献   

9.
Leaves under stressful conditions usually show downregulated maximum quantum efficiency of photosystem II [inferred from variable to maximum chlorophyll (Chl) a fluorescence (Fv/Fm), usually lower than 0.8], indicating photoinhibition. The usual method to evaluate the degree of photoinhibition in winter red leaves is generally by measuring the Fv/Fm on the red adaxial surface. Two phenotypes of overwintering Buxus microphylla ‘Wintergreen’ red leaves, with different measuring site and leaf thickness, were investigated in order to elucidate how red pigments in the outer leaf layer affected the Chl a fluorescence (Fv/Fm) and photochemical reflectance index. Our results showed that the Fv/Fm measured on leaves with the same red surface, but different leaf thickness, exhibited a slightly lower value in half leaf (separated upper and lower layers of leaves by removing the leaf edge similarly as affected by winter freezing and thawing) than that in the intact leaf (without removing the leaf edge), and the Fv/Fm measured on the red surface was significantly lower than that on the inner or backlighted green surface of the same thickness. Our results suggest that the usual measurement of Fv/Fm on red adaxial surface overestimates the actual degree of photoinhibition compared with that of the whole leaf in the winter.  相似文献   

10.
The influence of leaf orientation and position within shoots on individual leaf light environments, carbon gain, and susceptibility to photoinhibition was studied in the California chaparral shrub Heteromeles arbutifolia with measurements of gas exchange and chlorophyll fluorescence, and by application of a three-dimensional canopy architecture model. Simulations of light absorption and photosynthesis revealed a complex pattern of leaf light environments and resulting leaf carbon gain within the shoots. Upper, south-facing leaves were potentially the most productive because they intercepted greater daily photon flux density (PFD) than leaves of any other orientation. North-facing leaves intercepted less PFD but of this, more was received on the abaxial surface because of the steep leaf angles. Leaves differed in their response to abaxial versus adaxial illumination depending on their orientation. While most had lower photosynthetic rates when illuminated on their abaxial as compared to adaxial surface, the photosynthetic rates of north-facing leaves were independent of the surface of illumination. Because of the increasing self-shading, there were strong decreases in absorbed PFD and daily carbon gain in the basipetal direction. Leaf nitrogen per unit mass also decreased in the basipetal direction but on a per unit area basis was nearly constant along the shoot. The decrease in leaf N per unit mass was accounted for by an increase in leaf mass per unit area (LMA) rather than by movement of N from older to younger leaves during shoot growth. The increased LMA of older lower leaves may have contributed directly to their lower photosynthetic capacities by increasing the limitations to diffusion of CO2 within the leaf to the sites of carboxylation. There was no evidence for sun/shade acclimation along the shoot. Upper leaves and especially south-facing upper leaves had a potential risk for photoinhibition as demonstrated by the high PFDs received and the diurnal decreases in the fluorescence ratio F v/F m. Predawn F v/F m ratios remained high (>0.8) indicating that when in their normal orientations leaves sustained no photoinhibition. Reorientation of the leaves to horizontal induced a strong sustained decrease in F v/F m and CO2 exchange that slowly recovered over the next 10–15?days. If leaves were also inverted so that the abaxial surface received the increased PFDs, then the reduction in F v/F m and CO2 assimilation was much greater with no evidence for recovery. The heterogeneity of responses was due to a combination of differences between leaves of different orientation, differences between responses on their abaxial versus adaxial surfaces, and differences along the shoot due to leaf age and self-shading effects.  相似文献   

11.
Cold-hardened rye leaves have been shown to be more resistant to low temperature photoinhibition than non-hardened rye leaves. Isolated mesophyll cells from winter rye (Secale cereale L. cv. Musketeer) were exposed to photoinhibitory light conditions to estimate the importance of leaf morphology and leaf optical properties in the resistance of cold-hardened rye leaves to photoinhibition. Cold-hardened rye cells showed more resistance to photoinhibition than non-hardened rye cells when monitored with chlorophyll a variable to maximal fluorescence ratio (Fv/Fm). Thus, leaf morphology does not contribute to the resistance of cold-hardened rye leaves to low temperature photoinhibition. However, cold-hardened and non-hardened rye cells showed a similar extent of photoinhibition when photsynthetic CO2 fixation rates were measured. They also showed the same capacity to recover from photoinhibition. During both photoinhibition and recovery, Fv/Fm and light limited CO2 fixation rates showed different kinetics. We propose that inactivation and subsequent reactivation during recovery of some light activated Calvin cycle enzymes explain the greater extent of photoinhibition of light limited CO2 fixation and its faster recovery compared to Fv/Fm kinetics during photoinhibition.  相似文献   

12.
Caragana korshinskii Kom. is a perennial xerophytic shrub, well known for its ability to resist drought. In order to study ecophysiological responses of C. korshinskii under extreme drought stress and subsequent rehydration, diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem II as well as Chl content were analyzed. Plant responses to extreme drought included (1) leaf abscission and using stem for photosynthesis, (2) improved instantaneous water-use efficiency, (3) decreased photosynthetic rate and partly closed stomata owing to leaf abscission and low water status, (4) decreased maximum photochemical efficiency of photosystem II (PSII) (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of noncyclic electron transport of PSII, and Chl a and Chl b. Four days after rehydration, new leaves budded from stems. In the rewatered plants, the chloroplast function was restored, the gas exchange and Chl fluorescence returned to a similar level as control plant. The above result indicated that maintaining an active stem system after leaf abscission during extreme drought stress may be the foundation which engenders these mechanisms rapid regrowth for C. korshinskii in arid environment.  相似文献   

13.
In six dominant species of the Amazonian ‘Bana’ vegetation, leaf blade characteristics, pigment composition, and chlorophyll (Chl) fluorescence parameters were measured in young and mature leaves under field conditions. Leaf δ13C was comparable in the six species, which suggested that both expanding and expanded leaves contained organic matter fixed under similar intercellular and ambient CO2 concentration (C i/C a). High leaf C/N and negative δ15N values found in this habitat were consistent with the extreme soil N-deficiency. Analysis of Chl and carotenoids showed that expanding leaves had an incomplete development of photosynthetic antenna when compared to adult leaves. Dynamic inactivation of photosystem 2 (PS2) at midday was observed at both leaf ages as Fv/Fm decreased compared to predawn values. Adult leaves reached overnight Fv/Fm ratios typical of healthy leaves. Overnight recovery of Fv/Fm in expanding leaves was incomplete. F0 remained unchanged from midday to predawn and Fv tended to increase from midday to predawn. The recovery from midday depression observed in adult leaves suggested an acclimatory down-regulation associated with photo-protection and non-damage of PS2.  相似文献   

14.
Winkel  T.  Méthy  M.  Thénot  F. 《Photosynthetica》2002,40(2):227-232
Net photosynthetic rate, radiation use efficiency, chlorophyll (Chl) fluorescence, photochemical reflectance index (PRI), and leaf water potential were measured during a 25-d period of progressive water deficit in quinoa plants grown in a glasshouse in order to examine effects of water stress and ontogeny. All physiological parameters except Fv/Fm were sensitive to water stress. Ontogenic variations did not exist in Fv/Fm and leaf water potential, and were moderate to high in the other parameters. The complete recovery of photosynthetic parameters after re-irrigation was related with the stability in Fv/Fm. PRI showed significant correlation with predawn leaf water potential, Fm, and midday Fv/Fm. Thus PRI and Chl fluorescence may help in assessing physiological changes in quinoa plants across different developmental stages and water status.  相似文献   

15.
Under severe water stress, leaf wilting is quite general in higher plants. This passive movement can reduce the energy load on a leaf. This paper reports an experimental test of the hypothesis that leaf wilting movement has a protective function that mitigates against photoinhibition of photosynthesis in the field. The experiments exposed cotton (Gossypium hirsutum L.) to two water regimes: water-stressed and well-watered. Leaf wilting movement occurred in water-stressed plants as the water potential decreased to −4.1 MPa, reducing light interception but maintaining comparable quantum yields of photosystem II (PS II; Yield for short) and the proportion of total PS II centers that were open (qP). Predrawn F v/F m (potential quantum yield of PS II) as an indicator of overnight recovery of PS II from photoinhibition was higher than or similar to that in well-watered plants. Compared with water-stressed cotton leaves for which wilting movement was permitted, water-stressed cotton leaves restrained from such movement had significantly increased leaf temperature and instantaneous CO2 assimilation rates in the short term, but reduced Yield, qP, and F v/F m. In the long term, predrawn F v/F m and CO2 assimilation capacity were reduced in water-stressed leaves restrained from wilting movement. These results suggest that, under water stress, leaf wilting movement could reduce the incident light on leaves and their heat load, alleviate damage to the photosynthetic apparatus due to photoinhibition, and maintain considerable carbon assimilation capacity in the long term despite a partial loss of instantaneous carbon assimilation in the short term.  相似文献   

16.
Previous evidence has demonstrated that vertical leaves of Styrax camporum, a woody shrub from the Brazilian savanna, have a higher net photosynthetic rate (P N) compared with horizontal leaves, and that it is detected only if gas exchange is measured with light interception by both leaf surfaces. In the present study, leaf temperature (T leaf), gas exchange and chlorophyll (Chl) a fluorescence with light interception on adaxial and also on abaxial surfaces of vertical and horizontal mature fully-expanded leaves subjected to water deficit (WD) were measured. Similar gas-exchange and fluorescence values were found when the leaves were measured with light interception on the respective surfaces of horizontal and vertical leaves. WD reduced P N values measured with light interception on leaf surfaces of both leaf types, but the effective quantum yield of PSII (ΦPSII) and the apparent electron transport rate (ETR) were reduced only when the leaves were measured with light interception on the adaxial surface. WD did not decrease the maximum quantum yield of PSII (Fv/Fm) or increase T leaf, even at the peak of WD stress. Vertical leaf orientation in S. camporum is not related to leaf heat avoidance. In addition, the similar P N values and the lack of higher values of ΦPSII and ETR in vertical compared with horizontal leaves measured with light interception by each of the leaf surfaces suggests that the vertical leaf position is not related to photoprotection in this species, even when subjected to drought conditions. The exclusion of this photoprotective role could raise the alternative hypothesis that diverse leaf angles sustain whole plant light interception efficiency increased in this species.  相似文献   

17.
The change in optimal quantum efficiency (F v/F m) of the Arctic species Laminaria saccharina and Palmaria palmata was investigated in a long-term experiment in situ under different radiation levels during the summer of 1997 in the Kongsfjord (Ny-Ålesund, Spitsbergen, Norway, 78°55.5′N, 11°56.0′E). Whole plants were incubated in an open box system made of UV-transparent Perspex and exposed to solar radiation (λ>295?nm), solar radiation excluding UVB (λ?>?320?nm) and solar radiation excluding UVA?+ UVB (λ?>?400?nm). Increasing radiation levels were simulated by transplantation of the pre-adapted algae from their growth depth at 2?m to a water depth of 1?m. Sensitivity to artificially increased UV radiation was determined by exposure of algae from the three treatments to 6?h of strong UV radiation. P. palmata was relatively insensitive to increasing UV radiation and recovered very fast and almost completely in 2?h. Even plants pre-cultured in ambient radiation levels excluding UVA?+?UVB or UVB only showed no photoinhibition after exposure to extra UV radiation in the laboratory. L. saccharina was, in comparison to P. palmata, more sensitive and showed photoinhibition under solar radiation and solar minus UVB radiation after transplantation from 2 to 1?m water depth. However, after 3?weeks at 1?m depth, F v/F m of L. saccharina was equal in all treatments and restored to the original values at the start of the experiment. Sensitivity to extra UV radiation in the laboratory increased in time, although recovery was also fast and occurred within 20?h.  相似文献   

18.
In this work, photosystem II (PSII) photochemistry, leaf water potential, and pigment contents of male and female Pistacia lentiscus L. were investigated during a seasonal cycle at three different, arid locations: superior semiarid, inferior semiarid, and arid. The results showed that the gender, season, and the site conditions interacted to influence the quantum yield and pigment contents in P. lentiscus. Predawn leaf water status was determined only by the site and season. The annual patterns of PSII maximum quantum efficiency (Fv/Fm) were characterized by a suboptimal activity during the winter, especially, populations with the more negative water potential exhibited a lower chlorophyll (Chl) a content and chronic photoinhibition irrespective of a gender. We also demonstrated that both photochemical or nonphotochemical mechanisms were involved to avoid the photoinhibition and both of them depended on the season. This plasticity of photosynthetic machinery was accompanied by changes in carotenoids and Chl balance. In the spring, the female Fv/Fm ratio was significantly higher than in male individuals, when the sexual dimorphism occurred during the fruiting stage, regardless of site conditions. P. lentiscus sex-ratio in Mediterranean areas, where precipitations exceeded 500 mm, was potentially female-biased. Among the fluorescence parameters investigated, nonphotochemical quenching coefficient appeared as the most useful one and a correlation was found between Chl a content and Fv/Fm. These results suggest that functional ecology studies would be possible on a large scale through light reflectance analysis.  相似文献   

19.
Field‐collected specimens of three species of Laminaria and three species of subtidal red algae (Delesseria sanguinea, Plocamium cartilagineum and Phyllophora pseudoceranoides) were exposed to natural summer sunlight on Helgoland (southern North Sea) for up to 4 h at 15 °C. Dark‐adapted variable fluorescence (Fv : Fm) was measured immediately after these treatments, and following 6, 24 and 48 h of recovery in moderate irradiances of white light. The response of plants to the full spectrum of natural sunlight was compared with that to PAR alone, UV‐A + visible, UV‐A + UV‐B, or UV‐A alone. The Fv : Fm values of all species were reduced to minimal values after 4 h in all of these treatments, but those of the more resistant species (Laminaria spp. and P. pseudoceranoides) were higher after shorter exposures to UV radiation alone than to PAR with or without UV. The recovery of Fv : Fm in all species was also more rapid in the two treatments that contained UV radiation alone than in those that included PAR. These results suggest that it is the high irradiances of PAR in natural sunlight which are responsible for the photoinhibition of photosynthesis of subtidal seaweeds and that the current ambient irradiances of UV radiation (either UV‐B or UV‐A) in northern temperate latitudes would not contribute significantly to this photoinhibition.  相似文献   

20.
The effects of summer and winter stress on the chlorophyll and carotenoid contents and photosystem 2 efficiency were examined in six Mediterranean scrub species. These six species belong to two different plant functional types: drought semi-deciduous (Halimium halimifolium L., Rosmarinus officinalis L., Erica scoparia L.) and evergreen sclerophylls (Juniperus phoenicea L., Pistacia lentiscus L., Myrtus communis L.). Two sites with different water availability were chosen. In the xerophytic site, despite they belong to two different functional types, R. officinalis and J. phoenicea showed a similar response. These were the most affected species in summer. H. halimifolium showed optimal values of Fv/Fm and non-significant seasonal changes in xanthophyll content. In the mesic site, E. scoparia and M. communis were apparently the most affected species by winter climatic conditions. P. lentiscus presented a pattern similar to H. halimifolium, except for elevated F0 values. In all the studied species, lutein plus zeaxanthin content was negatively correlated with Fv/Fm in summer and with leaf water potential, thus indicating that the thermal dissipation of energy was a general pattern for all species. Under stress, plant response is more species-specific than dependent on its functional type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号