首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global crisis, urgently necessitating the development of safe, efficacious, convenient-to-store, and low-cost vaccine options. A major challenge is that the receptor-binding domain (RBD)-only vaccine fails to trigger long-lasting protective immunity if used alone for vaccination. To enhance antigen processing and cross-presentation in draining lymph nodes (DLNs), we developed an interferon (IFN)-armed RBD dimerized by an immunoglobulin fragment (I-R-F). I-R-F efficiently directs immunity against RBD to DLNs. A low dose of I-R-F induces not only high titers of long-lasting neutralizing antibodies (NAbs) but also more comprehensive T cell responses than RBD. Notably, I-R-F provides comprehensive protection in the form of a one-dose vaccine without an adjuvant. Our study shows that the pan-epitope modified human I-R-F (I-P-R-F) vaccine provides rapid and complete protection throughout the upper and lower respiratory tracts against a high-dose SARS-CoV-2 challenge in rhesus macaques. Based on these promising results, we have initiated a randomized, placebo-controlled, phase I/II trial of the human I-P-R-F vaccine (V-01) in 180 healthy adults, and the vaccine appears safe and elicits strong antiviral immune responses. Due to its potency and safety, this engineered vaccine may become a next-generation vaccine candidate in the global effort to overcome COVID-19.Subject terms: Innate immunity, Biological techniques  相似文献   

2.
3.
Fridman M  Walker F  Catimel B  Domagala T  Nice E  Burgess A 《Biochemistry》2000,39(50):15603-15611
Mutational analysis of the cRaf-1 Ras binding domain (RBD) identified several point mutants with elevated Ras binding. Detailed examination of the binding kinetics of one mutant (A85K) suggests that it associates with a greater range of isomeric conformers of v-H-Ras than wt-RBD. At limiting v-H-Ras concentrations, saturation binding to A85K-RBD is higher than to wt-RBD. Notably, in assay systems where the RBD concentration is limiting, no difference exists between wt-RBD and A85K-RBD saturation levels in the presence of a sufficiently large molar excess of Ras. The inability of wt-RBD to saturate all bindable Ras/GTP (defined by its binding to A85K-RBD) suggests that Ras/GTP exists as several isoforms and that only a minority of these isoforms are capable of associating with wt-RBD. These findings provide the first experimental evidence in support of functionally distinct Ras/GTP isoforms. We also describe a novel analysis of such isoforms.  相似文献   

4.
目的:以乙型肝炎病毒核心抗原HBcAg为载体,构建呈现新冠病毒刺突蛋白受体结合域的病毒样颗粒,并鉴定其免疫原性,为新冠病毒疫苗的开发提供新思路。方法:在乙型肝炎病毒核心蛋白氨基酸编码序列第78和81位插入新冠病毒刺突蛋白受体结合域(RBD),并通过柔性linker(G4S)3进行连接,序列优化后将融合基因克隆到原核表达载体pET-28a(+),转化表达菌Rosetta,在自诱导培养基中诱导表达,菌体破碎后经蔗糖密度梯度离心,透析浓缩的方法纯化病毒样颗粒。SDS-PAGE、Western blot、透射电子显微镜检测和鉴定VLPs。将制备的VLPs与佐剂等比例混合经皮下免疫BALB/c小鼠,ELISA检测小鼠血清中特异性抗体,分析该HBc-RBD VLPs的免疫原性。结果:在自诱导培养基中,大肠埃希菌可表达部分可溶的VLPs,经蔗糖密度梯度离心纯化后在透射电子显微镜下可以观察到病毒样颗粒的存在。动物实验表明HBc-RBD VLPs刺激小鼠产生了特异性抗体。结论:在原核表达系统中成功表达了展示RBD抗原的VLPs,并通过小鼠实验初步验证了免疫原性,为新冠病毒疫苗的研发提供了新方向。  相似文献   

5.
Point mutants of c-raf-1 RBD with elevated binding to v-Ha-Ras   总被引:4,自引:0,他引:4  
A mutational analysis of the Ras-binding domain (RBD) of c-Raf-1 identified three amino acid positions (Asn(64), Ala(85), and Val(88)) where amino acid substitution with basic residues increases the binding of RBD to recombinant v-Ha-Ras. The greatest increase in binding (6-9-fold) was observed with the A85K-RBD mutant. The elevated binding for the A85K-RBD and V88R-RBD mutants was also detected with Ras expressed in cultured mammalian cells, namely NIH-3T3 and BAF cells. None of the wild type residues in RBD positions Asn(64), Ala(85), and Val(88) have been previously implicated in the interaction with Ras (Block, C., Janknecht, R., Herrmann, C., Nassar, N., and Wittinghofer, A. (1996) Nat. Struct. Biol. 3, 244-251; Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F., and Wittinghofer, A. (1995) Nature 375, 554-560). The discovery of elevated binding among the mutants in these positions implies that additional RBD residues can be used to generate the Ras. RBD complex. These findings are of particular significance in the design of Ras antagonists based on the RBD prototype. The A85K-RBD mutant can be used to develop an assay for measuring the level of activated Ras in cultured cells; Sepharose-linked A85K-RBD.GST fusion protein served as an activation-specific probe to precipitate Ras.GTP but not Ras.GDP from epidermal growth factor-stimulated cells. A85K-RBD precipitates up to 5-fold more Ras.GTP from mammalian cells than wild type RBD.  相似文献   

6.
The N-terminal RNA-binding domain (RBD1) of the human U1A protein is evolutionarily designed to bind its RNA targets with great affinity and specificity. The physical mechanisms that modulate the coupling (local cooperativity) among amino acid residues on the extensive binding surface of RBD1 are investigated here, using mutants that replace a highly conserved glycine residue. This glycine residue, at the strand/loop junction of beta3/loop3, is found in U1A RBD1, and in most RBD domains, suggesting it has a specific role in modulation of RNA binding. Here, two RBD1 proteins are constructed in which that residue (Gly53) is replaced by either alanine or valine. These new proteins are shown by NMR methods and molecular dynamics simulations to be very similar to the wild-type RBD1, both in structure and in their backbone dynamics. However, RNA-binding assays show that affinity for the U1 snRNA stem-loop II RNA target is reduced by nearly 200-fold for the RBD1-G53A protein, and by 1.6 x 10(4)-fold for RBD1-G53V. The mode of RNA binding by RBD1-G53A is similar to that of RBD1-WT, displaying its characteristic non-additive free energies of base recognition and its salt-dependence. The binding mode of RBD1-G53V is altered, having lost its salt-dependence and displaying site-independence of base recognition. The molecular basis for this alteration in RNA-binding properties is proposed to result from the inability of the RNA to induce a change in the structure of the free protein to produce a high-affinity complex.  相似文献   

7.
The current COVID-19 pandemic has led to a devastating impact across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus causing COVID-19) is known to use the receptor-binding domain (RBD) at viral surface spike (S) protein to interact with the angiotensin-converting enzyme 2 (ACE2) receptor expressed on many human cell types. The RBD-ACE2 interaction is a crucial step to mediate the host cell entry of SARS-CoV-2. Recent studies indicate that the ACE2 interaction with the SARS-CoV-2 S protein has a higher affinity than its binding with the structurally identical S protein of SARS-CoV-1, the virus causing the 2002–2004 SARS outbreak. However, the biophysical mechanism behind such binding affinity difference is unclear. This study utilizes combined single-molecule force spectroscopy and steered molecular dynamics (SMD) simulation approaches to quantify the specific interactions between SARS-CoV-2 or SARS-CoV-1 RBD and ACE2. Depending on the loading rates, the unbinding forces between SARS-CoV-2 RBD and ACE2 range from 70 to 105 pN and are 30–40% higher than those of SARS-CoV-1 RBD and ACE2 under similar loading rates. SMD results indicate that SARS-CoV-2 RBD interacts with the N-linked glycan on Asn90 of ACE2. This interaction is mostly absent in the SARS-CoV-1 RBD-ACE2 complex. During the SMD simulations, the extra RBD-N-glycan interaction contributes to a greater force and prolonged interaction lifetime. The observation is confirmed by our experimental force spectroscopy study. After removing N-linked glycans on ACE2, its mechanical binding strength with SARS-CoV-2 RBD decreases to a similar level of the SARS-CoV-1 RBD-ACE2 interaction. Together, the study uncovers the mechanism behind the difference in ACE2 binding between SARS-CoV-2 and SARS-CoV-1 and could help develop new strategies to block SARS-CoV-2 entry.  相似文献   

8.
9.
10.
The yeast U1A protein is a U1 snRNP-specific protein. Like its human counterpart (hU1A), it has two conserved RNA binding domains (RBDs). The N-terminal RBD is quite different from the human protein, and a binding site on yeast U1 snRNA is not readily apparent. The C-terminal RBD is of unknown function. Using in vivo dimethyl sulfate (DMS) protection of mutant strains, we defined a region in yeast U1 snRNA as the likely U1A N-terminal RBD binding site. This was confirmed by direct in vitro binding assays. The site is very different from its vertebrate counterpart, but its location within yeast U1 snRNA suggests a conserved structural relationship to other U1 snRNP components. Genetic studies and sensitive in vivo splicing measurements indicate that the yeast U1A C-terminal RBD also functions in pre-mRNA splicing. We propose that the N-terminal RBD serves to tether the splicing-relevant C-terminal RBD to the snRNP.  相似文献   

11.
目的:设计并构建新型冠状病毒(SARS-CoV-2)受体结合结构域(receptor binding domain,RBD)在毕赤酵母表面的展示体系,并对表面展示的RBD进行功能性评价,从而为以RBD为靶点的高通量药物筛选平台奠定基础。方法:将四种锚定分子与新冠病毒RBD融合,电转化至毕赤酵母中;通过细胞免疫荧光分析,筛选能够成功展示RBD的锚定系统;进一步分析其与血管紧张素转化酶2(angiotensin-converting enzyme 2,ACE2)受体的亲和力,证明展示在细胞表面RBD分子的功能。结果:仅Sed1p锚定分子能够有效呈递RBD至毕赤酵母细胞表面,展示效率约为70%;亲和力分析结果表明,ACE2受体和表面展示RBD的亲和力(KD = 30.42 nmol/L)与溶液中RBD的亲和力(KD = 16.00 nmol/L)较为接近。结论:这一体系能够在毕赤酵母表面高效地展示具有生物学功能的RBD,可用于抗新冠病毒RBD药物的高通量筛选和评价。  相似文献   

12.
We describe the longitudinal kinetics of the serological response in COVID-19 recovered patients over a period of 14 months. The antibody kinetics in a cohort of 192 recovered patients, including 66 patients for whom follow-up serum samples were obtained at two to four clinic visits, revealed that RBD-specific antibodies decayed over the 14 months following the onset of symptoms. The decay rate was associated with the robustness of the response in that antibody levels that were initially highly elevated after the onset of symptoms subsequently decayed more rapidly. An exploration of the differences in the longitudinal kinetics between recovered patients and naïve vaccinees who had received two doses of the BNT162b2 vaccine showed a significantly faster decay in the naïve vaccinees, indicating that serological memory following natural infection is more robust than that following to vaccination. Our data highlighting the differences between serological memory induced by natural infection vs. vaccination contributed to the decision-making process in Israel regarding the necessity for a third vaccination dose.  相似文献   

13.
制备含破伤风毒素肽(tetanus toxin,TT)、促吞噬肽(tuftsin)和新型冠状病毒刺突蛋白(spike,S蛋白)受体结合域(receptor-binding domain,RBD)的融合蛋白,探讨分子内佐剂对RBD蛋白体液免疫和细胞免疫效果的影响。将破伤风毒素肽、促吞噬肽与S蛋白RBD区域通过柔性多肽串联,密码子优化后构建重组载体,原核表达纯化制备重组S-TT-tuftsin蛋白,与铝佐剂混合后免疫BALB/c小鼠,对其体液及细胞免疫效果进行评价。重组S-TT-tuftsin蛋白以包涵体形式表达,离子交换层析纯化后采用梯度透析进行复性,复性蛋白经Dot blotting鉴定,可与新冠亚单位疫苗(安徽智飞公司)免疫后人血清发生反应。小鼠免疫实验结果表明,免疫35 d时抗体水平到达平台期,含分子内佐剂重组蛋白(铝佐剂)免疫小鼠后血清ELISA抗体效价高达1︰66240,显著高于S-RBD蛋白(铝佐剂)免疫小鼠抗体效价(P<0.05)。同时,含分子内佐剂重组蛋白刺激小鼠产生更强的淋巴细胞增殖能力,刺激指数可达4.71±0.15,相较于S-RBD蛋白的刺激指数1.83±0.09具有显著性差异(P<0.0001)。分子内佐剂破伤风毒素肽和促吞噬肽可显著增强新冠S蛋白RBD域的体液免疫和细胞免疫效果,可为新冠亚单位疫苗和其他病毒亚单位疫苗的研制提供理论基础和参考。  相似文献   

14.
为原核表达严重急性呼吸综合征冠状病毒2(简称新型冠状病毒,severe acute respiratory syndrome-coronavirus 2,SARS-CoV-2)S蛋白受体结合域(receptor binding domain, RBD)并制备多克隆抗体,利用基因克隆技术将RBD基因连接到原核表达载体pGEX-6p-1和pET-32a(+)上,电转化至大肠杆菌XL1-Blue感受态细胞,利用优化后的表达条件大量表达重组蛋白,经亲和层析纯化后通过SDS-PAGE检测蛋白的表达情况。利用GST-RBD融合蛋白作为免疫抗原免疫小鼠制备多克隆抗体,ELISA和Western blot分析抗血清的效价和特异性。PCR鉴定和序列测定结果显示,成功构建了重组载体pGEX-RBD和pET-RBD,在大肠杆菌中实现了GST-RBD和RBD-His融合蛋白的可溶性高效表达。研究获得的多克隆抗体的滴度达到约1∶3 000,并具有良好的结合特异性。原核表达的可溶性新型冠状病毒RBD重组蛋白具有良好的免疫原性,为后续制备基因工程抗体奠定了实验基础。  相似文献   

15.
Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance.  相似文献   

16.
BACKGROUND: The small GTP binding protein Ras has important roles in cellular growth and differentiation. Mutant Ras is permanently active and contributes to cancer development. In its activated form, Ras interacts with effector proteins, frequently initiating a kinase cascade. In the lower eukaryotic Schizosaccharomyces pombe, Byr2 kinase represents a Ras target that in terms of signal-transduction hierarchy can be considered a homolog of mammalian Raf-kinase. The activation mechanism of protein kinases by Ras is not understood, and there is no detailed structural information about Ras binding domains (RBDs) in nonmammalian organisms. RESULTS: The crystal structure of the Ras-Byr2RBD complex at 3 A resolution shows a complex architecture similar to that observed in mammalian homologous systems, with an interprotein beta sheet stabilized by predominantly polar interactions between the interacting components. The C-terminal half of the Ras switch I region contains most of the contact anchors, while on the Byr2 side, a number of residues from topologically distinct regions are involved in complex stabilization. A C-terminal helical segment, which is not present in the known mammalian homologous systems and which is part of the auto-inhibitory region, has an additional binding site outside the switch I region. CONCLUSIONS: The structure of the Ras-Byr2 complex confirms the Ras binding module as a communication element mediating Ras-effector interactions; the Ras-Byr2 complex is also conserved in a lower eukaryotic system like yeast, which is in contrast to other small GTPase families. The extra helical segment might be involved in kinase activation.  相似文献   

17.

Objective

To investigate potential mechanisms involving abnormal iron metabolism and related inflammation in Parkinson disease (PD) patients with probable rapid eye movement sleep behavior disorder (PRBD).

Methods

Total 210 PD patients and 31 controls were consecutively recruited. PD patients were evaluated by RBD Screening Questionnaire (RBDSQ) and classified into PRBD and probable no RBD (NPRBD) groups. Demographics information were recorded and clinical symptoms were evaluated by series of rating scales. Levels of iron and related proteins and inflammatory factors in cerebrospinal fluid (CSF) and serum were detected. Comparisons among control, NPRBD and PRBD groups and correlation analyses between RBDSQ score and levels of above factors were performed.

Results

(1)The frequency of PRBD in PD patients is 31.90%. (2)PRBD group has longer disease duration, more advanced disease stage, severer motor symptoms and more non-motor symptoms than NPRBD group. (3)In CSF, levels of iron, transferrin, NO and IL–1β in PRBD group are prominently increased. RBDSQ score is positively correlated with the levels of iron, transferrin, NO and IL–1β in PD group. Iron level is positively correlated with the levels of NO and IL–1β in PD group. (4)In serum, transferrin level is prominently decreased in PRBD group. PGE2 level in PRBD group is drastically enhanced. RBDSQ score exhibits a positive correlation with PGE2 level in PD group.

Conclusions

PRBD is common in PD patients. PRBD group has severer motor symptoms and more non-motor symptoms. Excessive iron in brain resulted from abnormal iron metabolism in central and peripheral systems is correlated with PRBD through neuroinflammation.  相似文献   

18.
The consumption of the regional basic diet (RBD) determines a state of malnutrition found in the low-income population of Northeastern Brazil. A dietary supplement known as multimixture has been used as an alternative source of iron in food for the prevention and/or treatment of anemia and for the recovery from malnutrition. The purpose of the present work was to evaluate the bioavailability of iron in the RBD supplemented with multimixture in iron-depleted and non-depleted Wistar rats. To produce iron depletion in the animals, pretest depletion diets without iron and the pretest control diet based on the AIN-93 diet were used for 8 weeks. This phase was followed by the test diets: control, AIN-93 extrinsically labeled with 59FeCl3; RBD, containing carioca beans intrinsically labeled with 59Fe; and RBDMM, RBD plus multimixture, supplied in a single meal. Hemoglobin concentration, weight gain, and dietary intake were determined in the pretest phase. Iron bioavailability was determined by the determination of total-body radiation in the animals for 7 days, using a solid scintillation detector. The hemoglobin concentration, weight gain, and dietary intake were greater in the non-depleted animals than in the iron-depleted ones. The iron bioavailability of the diets did not differ significantly. It was concluded that the multimixture did not affect the bioavailability of Fe contained in the beans of the RBD.  相似文献   

19.
20.
Esterification is an industrially important reaction in the field of food and fuel industries. In biofuel and allied industries, long-chain alkyl esters are generally produced from different fat rich feedstocks including non-edible oils, acid oils, and tallow, using a variety of catalysts. Amongst these, whole cell systems have prominently been explored in recent past. The present study focused on the use of Aspergillus sp. RBD01 as a whole cell catalyst, in dry and whole cell suspension, to esterify oleic acid with different alcohols as acyl acceptors. Esterification with dried biomass resulted in better conversion of oleic acid to its respective ester as compared to cell suspension. Further, increase in chain length of alcohol resulted in decrease in the yield from ethyl oleate (98% EO) to decyl oleate (77% DO) with alcohols having an even number of carbon atoms giving better yield of esters over alcohols with odd numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号