首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutation detection plays a great role in genetic and medical research and clinical diagnosis of inherited diseases and particular cancers. Single-strand conformation polymorphism (SSCP) analysis is one of the most popular methods for detection of mutations. Recently, automated capillary electrophoresis (CE) systems have been used in SSCP analysis instead of conventional slab gel electrophoresis. SSCP analysis in combination with CE is a rapid, simple, sensitive and high-throughput mutation screening tool, and has been successfully applied for mutation detection involving human tumor suppressor genes, oncogenes and disease-causing genes. The new technique has a great potential for mutation screening of large numbers of samples in clinical diagnosis. This review discusses basic issues about the methodology of SSCP analysis based on CE and summarizes several key applications.  相似文献   

2.
We have analyzed previously three representative p53 single-point mutations by capillary-electrophoresis single-strand conformation polymorphism (CE-SSCP). In the current study, we compared our CE-SSCP results with the potential secondary structures predicted by an RNA/DNA-folding algorithm with DNA energy rules, used in conjunction with a computer analysis workbench called STRUCTURELAB. Each of these mutations produces measurable shifts in CE migration times relative to wild type. Using computerized folding analysis, each of the mutations was found to have a conformational difference relative to wild type, which accounts for the observed differences in CE migration. Additional properties exhibited in the CE electropherograms were also explained using the computerized analysis. These include the appearance of secondary peaks and the temperature dependence of the electrophoretic patterns. The results yield insight into the mechanism of SSCP and how the conditions of this measurement, especially temperature, may be optimized to improve the sensitivity of the SSCP method. The results may also impact other diagnostic methods, which would benefit by a better understanding of DNA single-strand conformation polymorphisms to optimize conditions for enzymatic cleavage and DNA hybridization reactions.  相似文献   

3.
We describe here a new method to screen for unknown mutations in the low density lipoprotein (LDL) receptor gene by the use of capillary electrophoresis in single-strand conformation polymorphism (SSCP) analysis. To analyze the promoter and all 18 exons, 20 different amplification reactions were necessary. For each polymerase chain reaction (PCR), the forward and reverse primers were 5′ fluorescent-labelled with FAM and HEX, respectively. To test the accuracy of the newly developed method, 61 genetic variants distributed in 16 exons were analyzed. Under identical electrophoresis conditions (13 kV, 30°C, 30 min), 59 mutations were detected by a distinct abnormal SSCP pattern. The two remaining mutations showed only slight abnormalities, which could be amplified by increasing the electrophoresis temperature. The high accuracy, the degree of automation and the speed of analysis make fluorescence-based SSCP analysis with capillary electrophoresis ideal for rapid mutation screening and the technique is well-suited for clinical applications.  相似文献   

4.
Automation is essential for rapid genetic-based mutation analysis in clinical laboratory to screen a large number of DNA samples. We propose in this report an automatic process using Beckman Coulter P/ACE™ capillary electrophoresis (CE) with laser-induced fluorescence (LIF) system to detect a single-point mutation in the codon 12 of human K-ras gene. Polymerase chain reaction (PCR) using a fluorescently labeled reverse primer and a plain forward primer to specifically amplify a selected 50 bp DNA fragment in human K-ras gene. The amplified DNA is placed on the sample tray of the CE system with a pre-programmed step for single-strand conformation polymorphism (SSCP) analysis. Sample injection and denaturation processes are performed online along with separation and real-time data analysis. The concept of automation for rapid DNA mutation analysis using CE-LIF system for SSCP is presented.  相似文献   

5.
Cryptosporidium species generally lack distinguishing morphological traits, and consequently, molecular methods are commonly used for parasite identification. Various methods for Cryptosporidium identification have been proposed, each with their advantages and disadvantages. In this study, we show that capillary electrophoresis coupled with single-strand conformation polymorphism (CE-SSCP) is a rapid, simple and cost-effective method for the identification of Cryptosporidium species and genotypes. Species could be readily differentiated based on the SSCP mobility of amplified 18S rRNA gene molecules. Clones that differed by single-nucleotide polymorphisms could be distinguished on CE-SSCP mobility. Profiles of species known to have heterogenic copies of 18S rRNA gene contained multiple peaks. Cloning and sequencing of Cryptosporidium parvum, Cryptosporidium hominis, Cryptosporidium fayeri and Cryptosporidium possum genotype 18S rRNA gene amplicons confirmed that these multiple peaks represented type A and type B 18S rRNA gene copies. CE-SSCP provides a reliable and sensitive analysis for epidemiological studies, environmental detection and diversity screening.  相似文献   

6.
The application of polymerase chain reaction (PCR) technology to molecular diagnostics holds great promise for the early identification of agriculturally important plant pathogens. Ralstonia solanacearum, Xanthomoans axonopodis pv. vesicatoria, and Xanthomonas oryzae pv. oryzae are phytopathogenic bacteria, which can infect vegetables, cause severe yield loss. PCR-single-strand conformation polymorphism (PCR-SSCP) is a simple and powerful technique for identifying sequence changes in amplified DNA. The technique of PCR-SSCP is being exploited so far, only to detect and diagnose human bacterial pathogens in addition to plant pathogenic fungi. Selective media and serology are the commonly used methods for the detection of plant pathogens in infected plant materials. In this study, we developed PCR-SSCP technique to identify phytopathogenic bacteria. The PCR product was denatured and separated on a non-denaturing polyacrylamide gel. SSCP banding patterns were detected by silver staining of nucleic acids. We tested over 56 isolates of R. solanacearum, 44 isolates of X. axonopodis pv. vesicatoria, and 20 isolates of X. oryzae pv. oryzae. With the use of universal primer 16S rRNA, we could discriminate such species at the genus and species levels. Species-specific patterns were obtained for bacteria R. solanacearum, X. axonopodis pv. vesicatoria, and X. oryzae pv. oryzae. The potential use of PCR-SSCP technique for the detection and diagnosis of phytobacterial pathogens is discussed in the present paper.  相似文献   

7.
8.
9.
10.
This protocol describes capillary array electrophoresis single-strand conformation polymorphism (CAE-SSCP), a screening method for detection of unknown and previously identified mutations. The method detects 98% of mutations in a sample material and can be applied to any organism where the goal is to determine genetic variation. This protocol describes how to screen for mutations in 192 singleplex or up to 768 multiplex samples over 3 days. The protocol is based on the principle of sequence-specific mobility of single-stranded DNA in a native polymer, and covers all stages in the procedure, from initial DNA purification to final CAE-SSCP data analysis, as follows: DNA is purified, followed by PCR amplification using fluorescent primers. After PCR amplification, double-stranded DNA is heat-denatured to separate the strands and subsequently cooled on ice to avoid reannealing. Finally, samples are analyzed by capillary electrophoresis and appropriate analysis software.  相似文献   

11.
12.
Single-strand conformation polymorphism (SSCP) analysis followed by direct sequencing of exons containing ATP-binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR) gene was performed on 80 Russian DNA samples. Two new alterations — S1196X (exon 19) and W1282R (exon 20) — and two novel polymorphisms — 1525-61 (intron 9) and 1716+12 T-C (intron 10) — were identified. Mutation S1196X changes a TCA codon to TGA and destroys an EcoRI site. Alteration W1282R results from a T-to-C change at position 3976. It was found in one Russian patient and creates an AciI site; however, it is unclear whether this is a disease-causing mutation or a polymorphism. Polymorphism 1525-61 results from an A-to-G change. Alteration 1716+12 T-C was found in a Moldovian patient and creates a new MaeII site. It is not known whether this alteration affects the splicing of the mRNA. The previously described A4002G polymorphism was encountered in approximately 9% of Russian CF chromosomes. In addition, we have found the previously described 3732delA mutation in 7 CF chromosomes, making it the second (after F508) most frequent mutation in the Russian population.  相似文献   

13.
Single-strand conformation polymorphism (SSCP) analysis of ribosomal DNA (rDNA) was investigated for rapid differentiation of phenotypically similar yeast species. Sensitive tests indicated that some yeast strains with one, most strains with two, and all strains with three or more nucleotide differences in the internal transcribed spacer 1 (ITS1) or ITS2 region could be distinguished by PCR SSCP analysis. The discriminative power of SSCP in yeast species differentiation was demonstrated by comparative studies of representative groups of yeast species from ascomycetes and basidiomycetes, including Saccharomyces species, medically important Candida species, and phylloplane basidiomycetous yeast species. Though the species within each group selected are closely related and have relatively similar rDNA sequences, they were clearly differentiated by PCR-SSCP analysis of the ITS1 region, given the amplified fragments were less than 350 bp in sizes. By using SSCP analysis for rapid screening of yeast strains with different rDNA sequences, species diversity existing in a large collection of yeast strains from natural sources was effectively and thoroughly investigated with substantially reduced time and cost in subsequent DNA sequencing.  相似文献   

14.
15.
Methylation-sensitive single-strand conformation analysis (MS-SSCA) is a method of screening for methylation changes at CpG sites in a region of DNA. After bisulfite modification, the region of interest is amplified using primers specific for bisulfite-modified sequences. The amplified products are denatured and run on a nondenaturing polyacrylamide gel. The sequence differences caused by methylation lead to the formation of different secondary structures (conformers) with different mobilities. MS-SSCA is a convenient and rapid method for screening large numbers of samples for methylation. Individual bands can readily be isolated and sequenced allowing more detailed analysis of methylation changes. In this article, we present a protocol for MS-SSCA and outline strategies for the design of primers for amplifying bisulfite-modified DNA sequences.  相似文献   

16.
17.
Anti-Mycobacterium tuberculosis drug-resistance, mainly multi-drug resistance (MDR-TB), represents an important public health problem in several countries. Aim of our study is to identify the presence of these mutations in M. tuberculosis isoniazid- and rifampin-resistant strains isolated in our Institute; to evaluate linkage between type of mutation and level of resistance; to determine the usefulness of easy molecular techniques for rapid detection of such mutations on body specimens. Isoniazid- and rifampin-resistance was tested on 67 M. tuberculosis strains by Single-Strand Conformation Polymorphism (SSCP) and Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) assays, using HaeIII, PstuI, BsteII, BstuI enzymes. Drug-resistance of control strains was determined by cultural techniques (fluorimetry- BACTEC 9120). Cultural assay showed isoniazid- and rifampin-resistance in 6.12 and 2%, respectively (data confirmed by SSCP assay). Mutation of katG, linked to isoniazid resistance, was detected using BstuI enzyme, and mutation of rpoB, expression of reduced sensitivity to rifampin, using HaeIII. 15 body specimens, M. tuberculosis-positive to conventional assays, were tested by SSCP technique. Epidemiologic reports of numerous cases of tuberculosis due to MDR strains induce to detect quickly both Mycobacteria and drug-resistance, in order to start prompt effective therapy. On this basis, molecular assays are useful for a rapid therapeutic decision.  相似文献   

18.
19.
Flavobacterium columnare intraspecies diversity was revealed by analyzing the 16S rRNA gene and the 16S-23S internal spacer region (ISR). Standard restriction fragment length polymorphism (RFLP) of these sequences was compared with single-strand conformation polymorphism (SSCP). Diversity indexes showed that both 16S-SSCP and ISR-SSCP improved resolution (D>or=0.9) when compared with standard RFLP. ISR-SSCP offered a simpler banding pattern than 16S-SSCP while providing high discrimination between isolates. SSCP analysis of rRNA genes proved to be a simple, rapid, and cost-effective method for routine fingerprinting of F. columnare.  相似文献   

20.
Morphological variations were observed in the advance third stage larvae of Gnathostoma spinigerum collected from swamp eel (Fluta alba), the second intermediate host. Larvae with typical and three atypical types were chosen for partial cytochrome c oxidase subunit I (COI) gene sequence analysis. A 450 bp polymerase chain reaction product of the COI gene was amplified from mitochondrial DNA. The variations were analyzed by single-strand conformation polymorphism and DNA sequencing. The nucleotide variations of the COI gene in the four types of larvae indicated the presence of an intra-specific variation of mitochondrial DNA in the G. spinigerum population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号