首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 521 毫秒
1.
Crkl, an SH2-SH3-SH3 adapter protein, is one of the major tyrosine phosphoproteins detected in cells from patients with chronic myelogenous leukemia. Crkl binds to BCR/ABL through its N-terminal SH3 domain and is known to interact with several signaling proteins that have been implicated in integrin signaling, including Cbl, Cas, Hef-1, and paxillin. We have previously shown that overexpression of Crkl enhances adhesion to extracellular matrix proteins through beta(1) integrins. In this study, the effects of Crkl on spontaneous and chemokine-directed migration of the hematopoietic cell line Ba/F3 were examined. Full-length, SH2-, and SH3(N)-domain deletion mutants of Crkl were expressed transiently as fusion proteins with green fluorescent protein. Successfully transfected cells were isolated by fluorescence-activated cell sorting. The ability of these cells to migrate across a fibronectin-coated membrane, either spontaneously or in response to the chemokine stromal-derived factor-1alpha, was determined. Cells expressing green fluorescent protein alone were not distinguishable from untransfected or mock transfected Ba/F3 cells. However, Ba/F3 cells overexpressing full-length Crkl were found to have an increase in spontaneous migration of 2.8 +/- 0.6-fold in seven independent assays. The enhancement of migration required both the SH2 domain and the N-terminal SH3 domain. Migration in response to stromal-derived factor-1alpha was not significantly enhanced by overexpression of Crkl. Overexpression of Crkii also augmented spontaneous migration but to a lesser degree than did Crkl. Because the SH2 domain was required for enhanced migration, we looked for changes in phosphotyrosine containing proteins coprecipitating with Crkl, but not Crkl DeltaSH2, after integrin cross-linking. Full-length Crkl, but not CrklDeltaSH2, coprecipitated with a single major tyrosine phosphoprotein with an M(r) of approximately 120 kDa, identified as Cbl. The major Crkl SH3-binding protein in these cells was found to be the guanine nucleotide exchange factor, C3G. Interestingly, overexpression of C3G also enhanced migration, suggesting that a Cbl-Crkl-C3G complex may be involved in migration signaling in Ba/F3 cells. These data suggest that Crkl is involved in signaling pathways that regulate migration, possibly through a complex with Cbl and C3G.  相似文献   

2.
In determining the role of Chk in T cell signaling, we have focused on its protein-protein interactions. We detected a tyrosine phosphoprotein that coimmunoprecipitated with Chk from pervanadate stimulated human blastic T cells. Subsequent Western blot analysis identified this tyrosine phosphoprotein as paxillin. Paxillin, a cytoskeletal protein involved in focal adhesions, was first identified as a v-Src substrate in transformed fibroblasts. Interestingly, Chk specifically bound tyrosine phosphorylated paxillin. Consistent with our in vivo data, Chk and paxillin were observed to localize in similar cellular regions prior to and following stimulation. Using GST fusion proteins, we determined that the Chk SH2 domain, not the SH3 domain, bound tyrosine phosphorylated paxillin. Specifically, paxillin bound to the FLVRES motif of the Chk SH2 domain. Using Far Western analysis, we revealed that the Chk SH2 domain directly associates with tyrosine phosphorylated paxillin. Finally, p52(Chk) expression in Csk-deficient mouse embryo fibroblasts decreased total phosphotyrosine levels of paxillin, implying a physiological role for Chk. These studies provide important insight into the role of Chk in tyrosine mediated signaling, as well as T cell physiology.  相似文献   

3.
Hematopoietic cell kinase (Hck) is a member of the Src-family of protein tyrosine kinases. We have found that upon enzymatic activation of Hck by the heavy metal mercuric chloride, there was a rapid increase in the levels of tyrosine phosphorylation of several proteins including the proto-oncogene p120(Cbl). Fibroblasts that are transformed with an activated allele of Hck exhibit constitutive Cbl phosphorylation. Upon Fcgamma receptor activation, a more physiologically relevant extracellular signal, Cbl is tyrosine phosphorylated and the Src-family selective inhibitor, PP1, can prevent this phosphorylation on Cbl. Hck phosphorylates Cbl in vitro and the interaction between Cbl and Hck is direct, requiring Hck's unique, SH3 and SH2 domains for optimal binding. Using a novel estrogen-regulated chimera of Hck we have shown a hormone-dependent association between Hck and Cbl in murine fibroblasts. This work suggests that Cbl serves as a key mediator of Hck induced signalling in hematopoietic cells.  相似文献   

4.
The cellular homologs of the v-Crk oncogene product are composed exclusively of Src homology region 2 (SH2) and SH3 domains. v-Crk overexpression in fibroblasts causes cell transformation and elevated tyrosine phosphorylation of specific cellular proteins. Among these proteins is a 130-kDa protein, identified as p130cas, that forms a stable complex in vivo with v-Crk. We have explored the role of endogenous Crk proteins in Bcr-Abl-transformed cells. In the K562 human chronic myelogenous leukemia cell line, p130cas is not tyrosine phosphorylated or bound to Crk. Instead, Crk proteins predominantly associate with the tyrosine-phosphorylated proto-oncogene product of Cbl. In vitro analysis showed that this interaction is mediated by the SH2 domain of Crk and can be inhibited with a phosphopeptide containing the Crk-SH2 binding motif. In NIH 3T3 cells transformed by Bcr-Abl, c-Cbl becomes strongly tyrosine phosphorylated and associates with c-Crk. The complex between c-Crk and c-Cbl is also seen upon T-cell receptor cross-linking or with the transforming, tyrosine-phosphorylated c-Cbl. These results indicate that Crk binds to c-Cbl in a tyrosine phosphorylation-dependent manner, suggesting a physiological role for the Crk-c-Cbl complex in Bcr-Abl tyrosine phosphorylation-mediated transformation.  相似文献   

5.
To elucidate the regulatory mechanism of cell transformation induced by c-Src tyrosine kinase, we performed a proteomic analysis of tyrosine phosphorylated proteins that interact with c-Src and/or its negative regulator Csk. The c-Src interacting proteins were affinity-purified from Src transformed cells using the Src SH2 domain as a ligand. LC-MS/MS analysis of the purified proteins identified general Src substrates, such as focal adhesion kinase and paxillin, and ZO-1/2 as a transformation-dependent Src target. The Csk binding proteins were analyzed by a tandem affinity purification method. In addition to the previously identified Csk binding proteins, including Cbp/PAG, paxillin, and caveolin-1, we found that ZO-1/2 could also serve as a major Csk binding protein. ZO-2 was phosphorylated concurrently with Src transformation and specifically bound to Csk in a Csk SH2 dependent manner. These results suggest novel roles for ZO proteins as Src/Csk scaffolds potentially involved in the regulation of Src transformation.  相似文献   

6.
Recent studies have demonstrated that Cbl, the 120-kDa protein product of the c-cbl proto-oncogene, serves as a substrate of a number of receptor-coupled tyrosine kinases and forms complexes with SH3 and SH2 domain-containing proteins, pointing to its role in signal transduction. Based on genetic evidence that the Caenorhabditis elegans Cbl homolog, SLI-1, functions as a negative regulator of the LET-23 receptor tyrosine kinase and our demonstration that Cbl's evolutionarily conserved N-terminal transforming region (Cbl-N; residues 1 to 357) harbors a phosphotyrosine binding (PTB) domain that binds to activated ZAP-70 tyrosine kinase, we examined the possibility that oncogenic Cbl mutants may activate mitogenic signaling by deregulating cellular tyrosine kinase machinery. Here, we show that expression of Cbl-N and two other transforming Cbl mutants (CblY368 delta and Cbl366-382 delta or Cb170Z), but not wild-type Cbl, in NIH 3T3 fibroblasts leads to enhancement of endogenous tyrosine kinase signaling. We identified platelet-derived growth factor receptor alpha (PDGFR alpha) as one target of mutant Cbl-induced deregulation. In mutant Cbl transfectants, PDGFR alpha was hyperphosphorylated and constitutively complexed with a number of SH2 domain-containing proteins. PDGFR alpha hyperphosphorylation and enhanced proliferation of mutant Cbl-transfected NIH 3T3 cells were drastically reduced upon serum starvation, and PDGF-AA substituted for the maintenance of these traits. PDGF-AA stimulation of serum-starved Cbl transfectants induced the in vivo association of transfected Cbl proteins with PDGFR alpha. In vitro, Cbl-N directly bound to PDGFR alpha derived from PDGF-AA-stimulated cells but not to that from unstimulated cells, and this binding was abrogated by a point mutation (G306E) corresponding to a loss-of-function mutation in SLI-1. The Cbl-N/G306E mutant protein, which failed to induce enhanced growth and transformation of NIH 3T3 cells, also failed to induce hyperphosphorylation of PDGFR alpha. Altogether, these findings identify a novel mechanism of Cbl's physiological function and oncogenesis, involving its PTB domain-dependent direct interaction with cellular tyrosine kinases.  相似文献   

7.
The Cbl adapter proteins typically function to down-regulate activated protein tyrosine kinases and other signaling proteins by coupling them to the ubiquitination machinery for degradation by the proteasome. Cbl proteins bind to specific tyrosine-phosphorylated sequences in target proteins via the tyrosine kinase-binding (TKB) domain, which comprises a four-helix bundle, an EF-hand calcium-binding domain, and a non-conventional Src homology-2 domain. The previously derived consensus sequence for phosphotyrosine recognition by the Cbl TKB domain is NXpY(S/T)XXP (X denotes lesser residue preference), wherein specificity is conferred primarily by residues C-terminal to the phosphotyrosine. Cbl is recruited to and phosphorylated by the insulin receptor in adipose cells through the adapter protein APS. APS is phosphorylated by the insulin receptor on a C-terminal tyrosine residue, which then serves as a binding site for the Cbl TKB domain. Using x-ray crystallography, site-directed mutagenesis, and calorimetric studies, we have characterized the interaction between the Cbl TKB domain and the Cbl recruitment site in APS, which contains a sequence motif, RA(V/I)XNQpY(S/T), that is conserved in the related adapter proteins SH2-B and Lnk. These studies reveal a novel mode of phosphopeptide interaction with the Cbl TKB domain, in which N-terminal residues distal to the phosphotyrosine directly contact residues of the four-helix bundle of the TKB domain.  相似文献   

8.
The genome of avian sarcoma virus CT10 encodes a fusion protein in which viral Gag sequences are fused to cellular Crk sequences containing primarily Src homology 2 (SH2) and Src homology 3 (SH3) domains. Transformation of chicken embryo fibroblasts (CEF) with the Gag-Crk fusion protein results in the elevation of tyrosine phosphorylation on specific cellular proteins with molecular weights of 130,000, 110,000, and 70,000 (p130, p110, and p70, respectively), an event which has been correlated with cell transformation. In this study, we have identified the 70-kDa tyrosine-phosphorylated protein in CT10-transformed CEF (CT10-CEF) as paxillin, a cytoskeletal protein suggested to be important for organizing the focal adhesion. Tyrosine-phosphorylated paxillin was found to be complexed with v-Crk in vivo as evident from coimmunoprecipitation studies. Moreover, a bacterially expressed recombinant glutathione S-transferase (GST)-CrkSH2 fragment bound paxillin in vitro with a subnanomolar affinity, suggesting that the SH2 domain of v-Crk is sufficient for binding. Mapping of the sequence specificity of a GST-CrkSH2 fusion protein with a partially degenerate phosphopeptide library determined a motif consisting of pYDXP, and in competitive coprecipitation studies, an acetylated A(p)YDAPA hexapeptide was able to quantitatively inhibit the binding of GST-CrkSH2 to paxillin and p130, suggesting that it meets the minimal structural requirements necessary for the interaction of CrkSH2 with physiological targets. To investigate the mechanism by which v-Crk elevates the tyrosine phosphorylation of paxillin in vivo, we have treated normal CEF and CT10-CEF with sodium vanadate to inhibit protein tyrosine phosphatase activity. These data suggest that paxillin is involved in a highly dynamic kinase-phosphatase interplay in normal CEF and that v-Crk binding may interrupt this balance to increase the steady-state level of tyrosine phosphorylation. By contrast, the 130-kDa protein was not tyrosine phosphorylated upon vanadate treatment of normal CEF and only weakly affected in the CT10-CEF, suggesting that a different mechanism may be involved in its phosphorylation.  相似文献   

9.
SRC family kinases play essential roles in a variety of cellular functions, including proliferation, survival, differentiation, and apoptosis. The activities of these kinases are regulated by intramolecular interactions and by heterologous binding partners that modulate the transition between active and inactive structural conformations. p130(CAS) (CAS) binds directly to both the SH2 and SH3 domains of c-SRC and therefore has the potential to structurally alter and activate this kinase. In this report, we demonstrate that overexpression of full-length CAS in COS-1 cells induces c-SRC-dependent tyrosine phosphorylation of multiple endogenous cellular proteins. A carboxy-terminal fragment of CAS (CAS-CT), which contains the c-SRC binding site, was sufficient to induce c-SRC-dependent protein tyrosine kinase activity, as measured by tyrosine phosphorylation of cortactin, paxillin, and, to a lesser extent, focal adhesion kinase. A single amino acid substitution located in the binding site for the SRC SH3 domain of CAS-CT disrupted CAS-CT's interaction with c-SRC and inhibited its ability to induce tyrosine phosphorylation of cortactin and paxillin. Murine C3H10T1/2 fibroblasts that expressed elevated levels of tyrosine phosphorylated CAS and c-SRC-CAS complexes exhibited an enhanced ability to form colonies in soft agar and to proliferate in the absence of serum or growth factors. CAS-CT fully substituted for CAS in mediating growth in soft agar but was less effective in promoting serum-independent growth. These data suggest that CAS plays an important role in regulating specific signaling pathways governing cell growth and/or survival, in part through its ability to interact with and modulate the activity of c-SRC.  相似文献   

10.
pp60v-src is a nonreceptor protein tyrosine kinase that can transform both chicken and rodent fibroblasts. The src homology 2 (SH2) domain of this protein serves a critical role in the regulation of protein tyrosine kinase activity. The host range proteins pp60v-src-L, which contains a deletion of a highly conserved residue (Phe-172) in the SH2 domain, and pp60v-src-PPP, which contains a change from a Leu to a Phe at amino acid 186 in the SH2 domain, transform chicken but not rat cells and have slightly reduced kinase activity measured in vitro. The data presented here show that these altered proteins require autophosphorylation on Tyr-416 for high kinase activity and transforming ability. In the absence of autophosphorylation, there is a further decrease of at least threefold in in vitro kinase activity relative to the phosphorylated host range parental protein, no morphological transformation, a reduction in anchorage independent growth, and no disruption of the actin cytoskeleton. In addition, these SH2 mutations abolish the ability of the SH2 domain to bind a phosphorylated peptide that corresponds to the autophosphorylation site of pp60src. Thus, like mutant alleles of c-src encoding transformation competent proteins, and unlike v-src, transformation by pp60v-src-F172 delta and pp60v-src-L186F is dependent on phosphorylation of Y-416 for high kinase activity and transformation ability. The dependence of transformation on phosphotyrosine is not a reflection of an intramolecular interaction between the autophosphorylation site and the SH2 domains since purified SH2 domains are incapable of binding phosphorylated autophosphorylation site peptides in vitro.  相似文献   

11.
One of the major proteins that is rapidly tyrosine phosphorylated upon stimulation of the TCR/CD3 complex is the 120-kDa product of the c-cbl protooncogene (Cbl). Upon activation, tyrosine-phosphorylated Cbl interacts with the Src homology 2 (SH2) domains of several signaling proteins, e.g., phosphatidylinositol 3-kinase (PI3-K) and CrkL. In the present study, we report that pretreatment of Jurkat T cells with PMA reduced the anti-CD3-induced tyrosine phosphorylation of Cbl and, consequently, its activation-dependent association with PI3-K and CrkL. A specific protein kinase C (PKC) inhibitor (GF-109203X) reversed the effect of PMA on tyrosine phosphorylation of Cbl and restored the activation-dependent association of Cbl with PI3-K and CrkL. We also provide evidence that PKCalpha and PKCtheta can physically associate with Cbl and are able to phosphorylate it in vitro and in vivo. Furthermore, a serine-rich motif at the C terminus of Cbl, which is critical for PMA-induced 14-3-3 binding, is also phosphorylated by PKCalpha and PKCtheta in vitro. These results suggest that, by regulating tyrosine and serine phosphorylation of Cbl, PKC is able to control the association of Cbl with signaling intermediates, such as SH2 domain-containing proteins and 14-3-3 proteins, which may consequently result in the modulation of its function.  相似文献   

12.

Background  

The adaptor protein p130 Cas (Cas) has been shown to be involved in different cellular processes including cell adhesion, migration and transformation. This protein has a substrate domain with up to 15 tyrosines that are potential kinase substrates, able to serve as docking sites for proteins with SH2 or PTB domains. Cas interacts with focal adhesion plaques and is phosphorylated by the tyrosine kinases FAK and Src. A number of effector molecules have been shown to interact with Cas and play a role in its function, including c-crk and v-crk, two adaptor proteins involved in intracellular signaling. Cas function is dependent on tyrosine phosphorylation of its substrate domain, suggesting that tyrosine phosphorylation of Cas in part regulates its control of adhesion and migration. To determine whether the substrate domain alone when tyrosine phosphorylated could signal, we have constructed a chimeric Cas molecule that is phosphorylated independently of upstream signals.  相似文献   

13.
Cbl is an adaptor protein and ubiquitin ligase that binds and is phosphorylated by the nonreceptor tyrosine kinase Src. We previously showed that the primary interaction between Src and Cbl is mediated by the Src homology domain 3 (SH3) of Src binding to proline-rich sequences of Cbl. The peptide Cbl RDLPPPPPPDRP(540-551), which corresponds to residues 540-551 of Cbl, inhibited the binding of a GST-Src SH3 fusion protein to Cbl, whereas RDLAPPAPPPDR(540-551) did not, suggesting that Src binds to this site on Cbl in a class I orientation. Mutating prolines 543-548 reduced Src binding to the Cbl 479-636 fragment significantly more than mutating the prolines in the PPVPPR(494-499) motif, which was previously reported to bind Src SH3. Mutating Cbl prolines 543-548 to alanines substantially reduced Src binding to Cbl, Src-induced phosphorylation of Cbl, and the inhibition of Src kinase activity by Cbl. Expressing the mutated Cbl in osteoclasts induced a moderate reduction in bone-resorbing activity and increased amounts of Src protein. In contrast, disabling the tyrosine kinase-binding domain of full-length Cbl by mutating glycine 306 to glutamic acid, and thereby preventing the previously described binding of the tyrosine kinase-binding domain to the Src phosphotyrosine 416, had no effect on Cbl phosphorylation, the inhibition of Src activity by full-length Cbl, or bone resorption. These data indicate that the Cbl RDLPPPP(540-546) sequence is a functionally important binding site for Src.  相似文献   

14.
The Nck adaptor protein comprises a single C-terminal SH2 domain and three SH3 domains. The domain structure of Nck suggests that Nck links tyrosine kinase substrates to proteins containing proline-rich motifs. Here we show that Bcr/Abl tyrosine kinase, and three tyrosine phosphorylated proteins (115, 120 and 155 kDa) are co-immunoprecipitated with antibody against Nck from lysates of the human leukaemia cell line K562. By means of affinity purification with the Nck-binding phosphopeptide EPGPY(P)AQPSV, we could also detect the association of endogenous Nck with the proto-oncogene product Cbl. An investigation of the nature of interactions revealed that Bcr/Abl, Cbl, and the 155-kDa tyrosine phosphotyrosine bind exclusively to the SH3 domains of Nck. In addition, none of the single SH3 domains of Nck expressed as glutathione-S-transferase (GST) fusion proteins is able to interact with the proline-rich ligands. However, combined first and second SH3 domains have the capacity to bind Bcr/Abl, Chl and p155. Mutations of conserved tryptophan to Lysine in either of the combined first and second SH3 domains completely abolish ligand binding. These data suggest that cooperation exists among the SH3 domains of Nck for a high-affinity binding of proteins containing proline-rich motifs.  相似文献   

15.
Crk-associated substrate (CAS, p130Cas) is a major tyrosine phosphorylated protein in cells transformed by v-crk and v-src oncogenes. We recently reported that reexpression of CAS in CAS-deficient mouse embryo fibroblasts transformed by oncogenic Src promoted an invasive phenotype associated with enhanced cell migration through Matrigel, organization of actin into large podosome ring and belt structures, activation of matrix metalloproteinase-2, and elevated tyrosine phosphorylation of the focal adhesion proteins FAK and paxillin. We have now extended these studies to examine the mechanism by which CAS achieves these changes and to evaluate the potential role for CAS in promoting in vivo tumor growth and metastasis. Whereas the presence or absence of CAS did not alter the primary growth of subcutaneous-injected Src-transformed mouse embryo fibroblasts, CAS expression was required to promote lung metastasis following removal of the primary tumor. The substrate domain YxxP tyrosines, the major sites of CAS phosphorylation by Src that mediate interactions with Crk, were found to be critical for promoting both invasive and metastatic properties of the cells. The ability of CAS to promote Matrigel invasion, formation of large podosome structures, and tyrosine phosphorylation of Src substrates, including FAK, paxillin, and cortactin, was also strictly dependent on the YxxP tyrosines. In contrast, matrix metalloproteinase-2 activation was most dependent on the CAS SH3 domain, whereas the substrate domain YxxP sites also contributed to this property. Thus multiple CAS-mediated signaling events are implicated in promoting invasive and metastatic properties of Src-transformed cells.  相似文献   

16.
Integrin-mediated cell adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation of intracellular proteins. Among these are the focal adhesion proteins p130cas (Cas) and focal adhesion kinase (FAK). Here we identify the kinase(s) mediating integrin-induced Cas phosphorylation and characterize protein-protein interactions mediated by phosphorylated Cas. We found that expression of a constitutively active FAK in fibroblasts results in a consecutive tyrosine phosphorylation of Cas. This effect required the autophosphorylation site of FAK, which is a binding site for Src family kinases. Integrin-mediated phosphorylation of Cas was not, however, compromised in fibroblasts lacking FAK. In contrast, adhesion-induced tyrosine phosphorylation of Cas was reduced in cells lacking Src, whereas enhanced phosphorylation of Cas was observed Csk- cells, in which Src kinases are activated. These results suggest that Src kinases are responsible for the integrin-mediated tyrosine phosphorylation of Cas. FAK seems not to be necessary for phosphorylation of Cas, but when autophosphorylated, FAK may recruit Src family kinases to phosphorylate Cas. Cas was found to form complexes with Src homology 2 (SH2) domain-containing signaling molecules, such as the SH2/SH3 adapter protein Crk, following integrin-induced tyrosine phosphorylation. Guanine nucleotide exchange factors C3G and Sos were found in the Cas-Crk complex upon integrin ligand binding. These observations suggest that Cas serves as a docking protein and may transduce signals to downstream signaling pathways following integrin-mediated cell adhesion.  相似文献   

17.
Identification of signaling molecules that regulate cell migration is important for understanding fundamental processes in development and the origin of various pathological conditions. The migration of Nara Bladder Tumor II (NBT-II) cells was used to determine which signaling molecules are specifically involved in the collagen-mediated locomotion. We show here that paxillin is tyrosine phosphorylated after induction of motility on collagen. Overexpression of paxillin mutants in which tyrosine 31 and/or tyrosine 118 were replaced by phenylalanine effectively impaired cell motility. Moreover, stimulation of motility by collagen preferentially enhanced the association of paxillin with the SH2 domain of the adaptor protein CrkII. Mutations in both tyrosine 31 and 118 diminished the phosphotyrosine content of paxillin and prevented the formation of the paxillin-Crk complex, suggesting that this association is necessary for collagen-mediated NBT-II cell migration. Other responses to collagen, such as cell adhesion and spreading, were not affected by these mutations. Overexpression of wild-type paxillin or Crk could bypass the migration-deficient phenotype. Both the SH2 and the SH3 domains of CrkII are shown to play a critical role in this collagen-mediated migration. These results demonstrate the important role of the paxillin-Crk complex in the collagen-induced cell motility.  相似文献   

18.
《The Journal of cell biology》1994,127(4):1139-1147
Expression of the leukocyte (beta 2) integrins is required for many functions of activated neutrophils (PMN), even when there is no recognized ligand for any beta 2 integrin. To investigate the hypothesis that beta 2 integrins may be involved in a signal transduction pathway related to cytoskeletal reorganization, we examined whether beta 2 integrins have a role in tyrosine phosphorylation of the cytoskeletal protein paxillin. Treatment of PMN in suspension with phorbol esters, f-Met-Leu-Phe, and TNF-alpha resulted in paxillin tyrosine phosphorylation. However, treatment of beta 2-deficient (LAD) PMN failed to induce paxillin tyrosine phosphorylation. Normal PMN phosphorylated paxillin in response to adhesion to immune complexes, while the LAD PMN did not. Adhesion of phorbol ester activated-LAD PMN to the extracellular matrix proteins fibronectin, laminin, and vitronectin failed to induce paxillin tyrosine phosphorylation. Treatment of activated normal PMN with mAb directed against the beta 2 integrin alpha chains demonstrated that CR3 (alpha M beta 2) was required for paxillin phosphorylation. Transfection of the cell line K562 with CR3 confirmed that CR3 ligation resulted in paxillin tyrosine phosphorylation. As a control, K562 transfected with CR2 (CD21) which bound equally avidly to the same complement C3-derived ligand (C3bi) as the CR3 transfectants, showed no enhanced tyrosine phosphorylation of paxillin upon receptor ligation. While both CR2 and CR3 transfectants showed efficient adhesion to a C3bi-coated surface, only the CR3 transfectants spread during adhesion and phosphorylated paxillin. Together these data demonstrate that CR3 is required for paxillin phosphorylation during activation of both adherent and nonadherent PMN. Even PMN activated in suspension or by adhesion to immune complexes, when no CR3 ligand is apparent, still require CR3 for a signal transduction pathway leading to paxillin tyrosine phosphorylation. This pathway is likely to be important for PMN function in inflammation and host defense.  相似文献   

19.
Tec family protein tyrosine kinases (TFKs) play a central role in hematopoietic cellular signaling. Initial activation takes place through specific tyrosine phosphorylation situated in the activation loop. Further activation occurs within the SH3 domain via a transphosphorylation mechanism, which for Bruton's tyrosine kinase (Btk) affects tyrosine 223. We found that TFKs phosphorylate preferentially their own SH3 domains, but differentially phosphorylate other member family SH3 domains, whereas non-related SH3 domains are not phosphorylated. We demonstrate that SH3 domains are good and reliable substrates. We observe that transphosphorylation is selective not only for SH3 domains, but also for dual SH3SH2 domains. However, the dual domain is phosphorylated more effectively. The major phosphorylation sites were identified as conserved tyrosines, for Itk Y180 and for Bmx Y215, both sites being homologous to the Y223 site in Btk. There is, however, one exception because the Tec-SH3 domain is phosphorylated at a non-homologous site, nevertheless a conserved tyrosine, Y206. Consistent with these findings, the 3D structures for SH3 domains point out that these phosphorylated tyrosines are located on the ligand-binding surface. Because a number of Tec family kinases are coexpressed in cells, it is possible that they could regulate the activity of each other through transphosphorylation.  相似文献   

20.
The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins for the ADP-ribosylation factor family of small GTP-binding proteins, but also serve as adaptors to link signaling proteins to distinct cellular locations. One role for GIT proteins is to link the PIX family of Rho guanine nucleotide exchange factors and their binding partners, the p21-activated protein kinases, to remodeling focal adhesions by interacting with the focal adhesion adaptor protein paxillin. We here identified the C-terminal domain of GIT1 responsible for paxillin binding. Combining structural and mutational analyses, we show that this region folds into an anti-parallel four-helix domain highly reminiscent to the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK). Our results suggest that the GIT1 FAT-homology (FAH) domain and FAT bind the paxillin LD4 motif quite similarly. Since only a small fraction of GIT1 is bound to paxillin under normal conditions, regulation of paxillin binding was explored. Although paxillin binding to the FAT domain of FAK is regulated by tyrosine phosphorylation within this domain, we find that tyrosine phosphorylation of the FAH domain GIT1 is not involved in regulating binding to paxillin. Instead, we find that mutations within the FAH domain may alter binding to paxillin that has been phosphorylated within the LD4 motif. Thus, despite apparent structural similarity in their FAT domains, GIT1 and FAK binding to paxillin is differentially regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号