首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomechanical properties of squid suckers were studied to provide inspiration for the development of sucker artefacts for a robotic octopus.Mechanical support of the rings found inside squid suckers was studied by bending tests.Tensile tests were carried out to study the maximum possible sucking force produced by squid suckers based on the strength of sucker stalks,normalized by the sucking areas.The squid suckers were also directly tested to obtain sucking forces by a special testing arrangement.Inspired by the squid suckers,three types of sucker artefacts were developed for the arm skin of an octopus inspired robot.The first sucker artefact made of knitted nylon sheet reinforced silicone rubber has the same shape as the squid suckers.Like real squid suckers,this type of artefact also has a stalk that is connected to the arm skin and a ring to give radial support.The second design is a straight cylindrical structure with uniform wall thickness made of silicone rubber.One end of the cylinder is directly connected to the arm skin and the other end is open.The final design of the sucker has a cylindrical base and a concave meniscus top.The meniscus was formed naturally using the surface tension of silicone gel,which leads to a higher level of the liquid around the edge of a container.The wall thickness decreases towards the tip of the sucker opening.Sucking forces of all three types of sucker artefacts were measured.Advantages and disadvantages of each sucker type were discussed.The final design of suckers has been implemented to the arm skin prototypes.  相似文献   

2.
Octopus skin samples were tested under quasi-static and scissor cutting conditions to measure the in-plane material properties and fracture toughness. Samples from all eight arms of one octopus were tested statically to investigate how properties vary from arm to arm. Another nine octopus skins were measured to study the influence of body mass on skin properties. Influence of specimen location on skin mechanical properties was also studied. Material properties of skin, i.e. the Young's modulus, ultimate stress, failure strain and fracture toughness have been plotted against the position of skin along the length of arm or body. Statistical studies were carried out to help analyzing experimental data obtained. Results of this work will be used as guidelines for the design and development of artificial skins for an octopus-inspired robot.  相似文献   

3.
Octopus skin samples were tested under quasi-static and scissor cutting conditions to measure the in-plane material properties and fracture toughness. Samples from all eight arms of one octopus were tested statically to investigate how properties vary from arm to arm. Another nine octopus skins were measured to study the influence of body mass on skin properties. Influence of specimen location on skin mechanical properties was also studied. Material properties of skin, i.e. the Young's modulus, ultimate stress, failure strain and fracture toughness have been plotted against the position of skin along the length of arm or body. Statistical studies were carried out to help analyzing experimental data obtained. Results of this work will be used as guidelines for the design and development of artificial skins for an octopus-inspired robot.  相似文献   

4.
The use of artificial bones in implant testing has become popular due to their low variability and ready availability. However, friction coefficients, which are critical to load transfer in uncemented implants, have rarely been compared between human and artificial bone, particularly for wet and dry conditions. In this study, the static and dynamic friction coefficients for four commercially used titanium surfaces (polished, Al(2)O(3) blasted, plasma sprayed, beaded) acting on the trabecular component of artificial bones (Sawbones) were compared to those for human trabecular bone. Artificial bones were tested in dry and wet conditions and normal interface stress was varied (0.25, 0.5, 1.0MPa). Friction coefficients were mostly lower for artificial bones than real bone. In particular, static friction coefficients for the dry polished surface were 20% of those for real bone and 42-61% for the dry beaded surface, with statistical significance (alpha<0.05). Less marked differences were observed for dynamic friction coefficients. Significant but non-systematic effects of normal stress or wet/dry condition on friction coefficients were observed within each surface type. These results indicate that the use of artificial bone models for pre-clinical implant testing that rely on interface load transfer with trabecular bone for mechanical integrity can be particularly sensitive to surface finish and lubrication conditions.  相似文献   

5.
We consider the problem of color regulation in visual pigments for both bovine rhodopsin (lambda max = 500 nm) and octopus rhodopsin (lambda max = 475 nm). Both pigments have 11-cis-retinal (lambda max = 379 nm, in ethanol) as their chromophore. These rhodopsins were bleached in their native membranes, and the opsins were regenerated with natural and artificial chromophores. Both bovine and octopus opsins were regenerated with the 9-cis- and 11-cis-retinal isomers, but the octopus opsin was additionally regenerated with the 13-cis and all-trans isomers. Titration of the octopus opsin with 11-cis-retinal gave an extinction coefficient for octopus rhodopsin of 27,000 +/- 3000 M-1 cm-1 at 475 nm. The absorption maxima of bovine artificial pigments formed by regenerating opsin with the 11-cis dihydro series of chromophores support a color regulation model for bovine rhodopsin in which the chromophore-binding site of the protein has two negative charges: one directly hydrogen bonded to the Schiff base nitrogen and another near carbon-13. Formation of octopus artificial pigments with both all-trans and 11-cis dihydro chromophores leads to a similar model for octopus rhodopsin and metarhodopsin: there are two negative charges in the chromophore-binding site, one directly hydrogen bonded to the Schiff base nitrogen and a second near carbon-13. The interaction of this second charge with the chromophore in octopus rhodopsin is weaker than in bovine, while in metarhodopsin it is as strong as in bovine.  相似文献   

6.
Bioinspired design of biomimetic sensors relies upon the complete understanding of properties and functioning of biological analogues in conjunction with an understanding of their microstructural organization at various length scales. In the spirit of this approach, the microscopic properties of infrared (IR) receptors of snakes with "infrared vision" were studied with scanning thermal microscopy and micromechanical analysis. Low surface thermal conductivity of 0.11 W/(m K) was measured for the IR receptor surfaces as compared to the nonspecific skin areas. This difference in surface thermal conductivity should result in a significant local temperature gradient around the receptor areas. Micromechanical analysis showed that pit organs were more compliant than surrounding skin areas with an elastic modulus close to 40 MPa. In addition, the maximum elastic modulus was detected for the outermost layer with gradually reduced elastic resistance for the interior. The porous microstructure of the underlying tissue combined with the highly branched microfibrillar network (Biomacromolecules 2001, 2, 757) is thought to be responsible for such a combination of biomaterial properties. Considering these biomaterials features, we postulated a possible design of an artificial photothermal detector inspired by the microstructure of natural receptors. This bioinspired design would include a microfabricated cavity filled with an ordered lattice of microspheres with a gradient periodicity from the surface to the interior. Such a "photonic cavity" could provide an opportunity for multiple scattering at wavelength tuned to 8-12 microm as a range of highest sensitivity.  相似文献   

7.
A “Living” Machine   总被引:2,自引:0,他引:2  
Biomimetics (or bionics) is the engineering discipline that constructs artificial systems using biological principles. The ideal final result in biomimetics is to create a living machine. But what are the desirable and non-desirable properties of biomimetic product7 Where can natural prototypes be found7 How can technical solutions be transferred from nature to technology? Can we use living nature like LEC, O bricks for oonstmction our machines? How can biology help us? What is a living machine? In biomimetic practice only some “part“ (organ, part of organ, tissue) of the observed whole organism is utilized. A possible template for future super-organism extension for biornimetic methods might be drawn from experiments in holistic ecological agriculture (ecological design, permacuhure, ecological engineering, etc. ). The necessary translation of these roles to practical action can be achieved with the Russian Theory of Inventive Problem Solving (TRIZ), specifically adjusted to biology. Thus, permaculture, reinforced by a TRIZ conceptual framework, might provide the basis for Super-Organismic Bionics, which is hypothesized as necessary for effective ecological engineering. This hypothesis is supported by a case study-the design of a sustainable artificial nature reserve for wild pollinators as a living machine.  相似文献   

8.
The genomic DNA-DNA hybridization (DDH) method has been widely used as a practical method for the determination of phylogenetic relationships between closely related biological strains. Traditional DDH methods have serious limitations including low reproducibility, a high background and a time-consuming procedure. The DDH method using a genome-probing microarray (GPM) has been recently developed to complement conventional methods and could be used to overcome the limitations that are typically encountered. It is necessary to compare the GPM-based DDH method to the conventional methods before using the GPM for the estimation of genomic similarities since all of the previous scientific data have been entirely dependent on conventional DDH methods. In order to address this issue we compared the DDH values obtained using the GPM, microplate and nylon membrane methods to multi-locus sequence typing (MLST) data for 9 Salmonella genomes and an Escherichia coli type strain. The results showed that the genome similarity values and the degrees of standard deviation obtained using the GPM method were lower than those obtained with the microplate and nylon membrane methods. The dendrogram from the cluster analysis of GPM DDH values was consistent with the phylogenetic tree obtained from the multi-locus sequence typing (MLST) data but was not similar to those obtained using the microplate and nylon membrane methods. Although the signal intensity had to be maximal when the targets were hybridized to their own probe, the methods using membranes and microplates frequently produced higher signals in the heterologous hybridizations than those obtained in the homologous hybridizations. Only the GPM method produced the highest signal intensity in homologous hybridizations. These results show that the GPM method can be used to obtain results that are more accurate than those generated by the other methods tested.  相似文献   

9.
Most studies that have tested the egg-recognition and egg-rejection ability of European cuckoo Cuculus canorus hosts have used artificial model eggs that are much harder than real Cuckoo eggs. Here we evaluate whether the use of such models overestimates the costs of egg rejection by hosts. We tested 17 potential cuckoo host species in south-eastern Spain with both artificial hard cuckoo-egg models and real eggs taken from a population of house sparrows Passer domesticus breeding in captivity. The puncture resistance of sparrow eggs, measured in the laboratory, was more similar to that of real cuckoo eggs than was the resistance of artificial models, although sparrow eggs were less resistant than real cuckoo eggs. Potential host species with a grasp index greater than 200 mm2 did not suffer high rejection costs when rejecting hard models, probably because they are grasp ejectors. However, all species with a smaller grasp index suffered high costs when rejecting hard artificial models. For these species the frequency and magnitude of costs were significantly higher when rejecting artificial hard models than when rejecting real eggs. For some species the breakage of real eggs was quite difficult (they needed 97 to more than 4000 pecks in video-recorded ejections), and sometimes the birds suffered rejection costs. These results show that realistic estimates of the frequency and magnitude of rejection costs for hosts with small bills cannot be obtained by using artificial models, and also that for a variety of medium-sized puncture ejector species the costs when rejecting real eggs may be low.  相似文献   

10.
This paper addresses the design of a biomimetic fish robot actuated by piezoeeramic actuators and the effect of artificial caudal fins on the fish robot's performance. The limited bending displacement produced by a lightweight piezocomposite actuator was amplified and transformed into a large tail beat motion by means of a linkage system. Caudal fins that mimic the shape of a mackerel fin were fabricated for the purpose of examining the effect of caudal fm characteristics on thrust production at an operating frequency range. The thickness distribution of a real mackerel's fin was measured and used to design artificial caudal fins. The thrust performance of the biomimetic fish robot propelled by fins of various thicknesses was examined in terms of the Strouhal number, the Froude number, the Reynolds number, and the power consumption. For the same fm area and aspect ratio, an artificial caudal fin with a distributed thickness shows the best forward speed and the least power consumption.  相似文献   

11.
We have previously shown that a range of nicotinamide containing ‘biomimetic coenzymes’ function as active analogues of NAD+ in the oxidation of alcohols by horse liver alcohol dehydrogenase (HLADH), despite their apparently astonishing lack of structural similarity to the natural coenzyme. The simplest structure as yet shown to exhibit activity is the biomimetic coenzyme CL4. To investigate the effect of the structure of this truncated artificial coenzyme on its activity, a range of close structural analogues of CL4 were designed, synthesized and characterized. The electrochemical reduction potentials of the analogues were strongly influenced by the nature of the groups attached to the pyridine ring. All of the analogues could be chemically reduced using sodium borohydride, to give compounds with altered UV‐visible absorption and fluorescence properties. An HPLC‐based assay suggested that two of the new analogues were coenzymically active in the oxidation of butan‐1‐ol by HLADH, with one displaying a significantly higher activity than CL4. The results demonstrate which features of the structures of the coenzymes lead to desirable electrochemical and spectroscopic properties, but suggest that the structural requirements for a functional coenzyme are quite stringent. These observations may be used to design an artificial coenzyme which combines the best features of those studied so far. Copyright Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
The genomic DNA–DNA hybridization (DDH) method has been widely used as a practical method for the determination of phylogenetic relationships between closely related biological strains. Traditional DDH methods have serious limitations including low reproducibility, a high background and a time-consuming procedure. The DDH method using a genome-probing microarray (GPM) has been recently developed to complement conventional methods and could be used to overcome the limitations that are typically encountered. It is necessary to compare the GPM-based DDH method to the conventional methods before using the GPM for the estimation of genomic similarities since all of the previous scientific data have been entirely dependent on conventional DDH methods. In order to address this issue we compared the DDH values obtained using the GPM, microplate and nylon membrane methods to multi-locus sequence typing (MLST) data for 9 Salmonella genomes and an Escherichia coli type strain. The results showed that the genome similarity values and the degrees of standard deviation obtained using the GPM method were lower than those obtained with the microplate and nylon membrane methods. The dendrogram from the cluster analysis of GPM DDH values was consistent with the phylogenetic tree obtained from the multi-locus sequence typing (MLST) data but was not similar to those obtained using the microplate and nylon membrane methods. Although the signal intensity had to be maximal when the targets were hybridized to their own probe, the methods using membranes and microplates frequently produced higher signals in the heterologous hybridizations than those obtained in the homologous hybridizations. Only the GPM method produced the highest signal intensity in homologous hybridizations. These results show that the GPM method can be used to obtain results that are more accurate than those generated by the other methods tested.  相似文献   

13.
A pelvic endoprosthesis is the primary means of pelvic reconstruction after internal hemipelvectomy. In this study, a novel biomimetic hemipelvic prosthesis, including an artificial ilium, an artificial acetabulum, and an artificial pubis, was developed. A Finite Element Method (FEM) was carried out to investigate the biomechanical performance of a pelvis reconstructed with biomimetic hemipelvic prosthesis. Two models, including the reconstructed pelvis and the original pelvis (control model), were established according to the geometry from CT data of a human male patient with pelvic bone sarcomas. The FE models predict that the biomeehanical function of the pelvic ring can be reestablished using this prosthesis. Results show that the body force loaded on the S 1 vertebra is restored and transferred towards the sacro-iliac joint, and along the ilium onto the bearing surface of the artificial ilium, then to the artificial acetabulum and pubis. Von Mises stresses observed in this reconstructed pelvis model are still within a low and elastic range below the yielding strength of cortical bone and Ti6A14V. The values of deformation and strain of the reconstructed pelvis are close to the data obtained in the original pelvis. With the partial replacement of the pubis, little influence is found towards the pubis symphysis. However, the interface between the prosthesis and pelvic bone may become the critical part of the reconstructed pelvis due to the discontinuity in the material properties, which results in stress shielding and deformation constraining. So a biomimetic flexible connection or inter layer to release the deformation of pelvis is suggested in future designing.  相似文献   

14.
T cells from mice injected with picryl sulfonic acid have previously been shown to suppress the effector and possibly other phases of contact hypersensitivity reactions to picryl chloride. In this report we examine their effect on T cells helping the early direct anti-TNP plaque-forming cell response of mice painted with picryl chloride. They did not directly inhibit the activity of the helper cells but did inhibit the ability of mice to generate helper cells after skin painting. The suppressor cells were T cells as tested by passage through nylon wool columns and sensitivity to anti-θ serum. Viable syngeneic cells were required for suppression and their effect was specific. The suppressor cells could not be generated in adult thymectomized mice but could be produced in mice treated with high doses (200 mg/kg) of cyclophosphamide. These properties are distinct from those of suppressor T cells produced following immunization with picryl chloride but are the same as those of other suppressor cells induced by PSA which inhibit contact hypersensitivity.  相似文献   

15.
The concentrations of D- and L-lactate, methylglyoxal and pyruvate were measured in tissues of normal and starved Octopus ocellatus. D-Lactate was always more abundant than L-lactate in the tissues. D-Lactate, pyruvate and methylglyoxal were present in 320, 94 and 43 times higher concentrations in tentacle of O. ocellatus of control group than those in normal rat skeletal muscle. The D-lactate concentration in the tentacle of O. ocellatus was 17-fold higher than that in Octopus vulgars. The activities of enzymes involved with D-lactate metabolism such as pyruvate kinase, octopine dehydrogenase, glyoxalase I and II and lactate dehydrogenase were measured in those tissues. The activities of glyoxalase I and II, and D-lactate dehydrogenase were increased in mantle and tentacle of starved octopus, while the levels of D-lactate and related metabolites were lowered in these tissues. The experimental results presented in this report and up to the present indicate that D-lactate is actively used for energy production in the tentacle and mantle of the starved animals. In octopus, especially starved octopus D-lactate was actively produced from methylglyoxal, which is formed via aminoacetone from threonine and glycine.  相似文献   

16.
An experiment-based approach is proposed to improve the performance of biomimetic undulatory locomotion through on-line optimization. The approach is implemented through two steps: (1) the generation of coordinated swimming gaits by artificial Central Pattern Generators (CPGs); (2) an on-line searching of optimal parameter sets for the CPG model using Genetic Algorithm (GA). The effectiveness of the approach is demonstrated in the optimization of swimming speed and energy effi- ciency for a biomimetic fin propulsor. To evaluate how well the input energy is converted into the kinetic energy of the pro- pulsor, an energy-efficiency index is presented and utilized as a feedback to regulate the on-line searching with a closed-loop swimming control. Experiments were conducted on propulsor prototypes with different fin segments and the optimal swimming patterns were found separately. Comparisons of results show that the optimal curvature of undulatory propulsor, which might have different shapes depending on the actual prototype design and control scheme. It is also found that the propulsor with six fin segments, is preferable because of hizher speed and lower energy efficiency.  相似文献   

17.
The main goals of biomimetic chemistry have been formulated on the basis of the concept of biochemical organization. Biomimetic chemistry is defined as a science which employs the principles of biochemical organization (i. e., the principles of structural organization, functioning and regulation of biological systems at the levels corresponding to biomacromolecules, supramolecular complexes and subcellular structures) for the construction of artificial systems with predetermined properties or for conferring desired properties on natural biochemical systems with the help of artificial elements. The relationships between biomimetics and biochemical modelling are discussed. As examples of biomimetic systems, some enzymes entrapped into hydrated reverse micelles of a surfactant in an organic solvent and conjugates of proteins with polyalkylene oxidases are considered.  相似文献   

18.
Finite element analysis was implemented in three stages to design a piezoresistive, micro-electro-mechanical systems sensor array consisting of four-terminal sensors placed on deformable silicon diaphragms. This sensor array was used to retrofit the Contrel-Dubousset instrumentation in order to capture forces and moments applied by surgeons in real time during scoliosis correction surgery. Outputs from the sensor array have been designed to be compatible with a low-power wireless data transmission system that is currently being developed with a collaborating team in the biomedical industry. The designed sensor array is capable of resolving forces of up to 1000 N and moments of up to 4000 N mm in three dimensions during surgery. A process flow to produce the first prototyped version of this micro sensor with known performance characteristics is presented and tested. Acceptable correlation was found between the performance of the manufactured prototypes, numerical simulation and similar documented devices.  相似文献   

19.
微针阵列作为新型透皮给药技术,受到广泛关注。通常以刺入力、刺入率和刺入深度来评价微针刺入皮肤的程度和效率。皮肤是其性能评价的基础。皮肤的物理特性主要由角蛋白丝、胶原纤维、弹性纤维和皮下组织综合决定,并且从厚度、弹性、硬度和韧性等维度反映其对微针刺入的影响。机械的、渗透的、组织的和屏障的等皮肤模型被用于解读和模拟真实皮肤的该方面功能。同样,通过皮肤力学分析后建立的包括本构模型在内的各种皮肤力学模型也从物理维度解析皮肤的力学特征。真实皮肤具有复杂性,存在差异性大、不易获取和储存,以及伦理等问题,而皮肤模型可在一定程度上代替真实皮肤辅助微针递送系统设计、开发和性能评价。本文系统回顾分析了皮肤组织的物理特性、各种皮肤模型的制备及特点、真实皮肤和模拟皮肤在评价微针穿刺性能方面的应用,为开发及建立合适的皮肤模型提供借鉴。  相似文献   

20.
The collagenous dermis of the white rhinoceros forms a thick, protective armour that is highly specialized in its structure and material properties compared with other mammalian skin. Rhinoceros skin is three times thicker than predicted allometrically, and it contains a dense and highly ordered three-dimensional array of relatively straight and highly crosslinked collagen fibres. The skin of the back and flanks exhibits a steep stress-strain curve with very little 'toe' region, a high elastic modulus (240 MPa), a high tensile strength (30 MPa), a low breaking strain (0.24) and high breaking energy (3 MJm-3) and work of fracture (78 kJm-2). By comparison, the belly skin is somewhat less stiff, weaker, and more extensible. In compression, rhinoceros skin withstands average stresses and strains of 170 MPa and 0.7, respectively, before yielding. As a biological material, rhinoceros dorsolateral skin has properties that are intermediate between those of 'normal' mammalian skin and tendons. This study shows that the dermal armour of the rhinoceros is very well adapted to resist blows from the horns of conspecifics, as might occur during aggressive behaviour, due to specialized material properties as well as its great thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号