首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro selection has been used as a method to determine the optimal binding site for DNA-binding proteins. We report here in vitro selection of dsDNA sequences that bind to mutated-GCN4-bZIP peptides. The GCN4-bZIP peptide mutated from alanine to histidine on a position-14 that contacts with DNA bound to different sequence from a binding site of wild type peptide.  相似文献   

2.
A surface modification procedure for the creation of self-assembled monolayers (SAMs) that can be used as a scaffold for double-stranded DNA (dsDNA) incorporation onto the gold surfaces is described. The SAMs of an azidohexane thiol derivative were prepared on the Au electrode and then used for the immobilization of dsDNA. The electrochemical characteristics of dsDNA onto the SAM-modified gold electrode were investigated by cyclic voltammetry and electrochemical impedance spectroscopy, and the surface concentration of dsDNA onto the SAMs surface was estimated. The interaction of dsDNA with the anticancer drug, taxol (paclitaxel), was also studied on the surface of DNA/SAM/Au electrode. The observed decrease in the guanine oxidation peak current was used to monitor the interaction of taxol with DNA. The resulting Langmuir isotherm for taxol binding to DNA at the modified electrode was used to evaluate the binding constant of taxol-DNA. The results obtained supported the groove binding interaction of taxol with DNA. The modified electrode was used as a sensitive sensor for quantification of taxol in human serum sample.  相似文献   

3.
A new class of microgonotropen compounds (FIMGTs), which fluoresce upon binding to dsDNA, is introduced. The FMGTs consist of a minor groove binding moiety based upon Hoescht 33258 covalently attached to a polyamine chain capable of interacting with the phosphodiester backbone of dsDNA. The interactions of FMGTs with dsDNA were investigated by fluorescence and UV spectroscopy. Several different dsDNA oligomers were studied to determine the effect of binding site sequence on stoichiometric and binding affinity. The FMGTs were found to bind a dsDNA oligomer that contained the sequence 5'-AATTT-3' with FMGT:dsDNA stoichiometrics equal to 2:1 or 3:1. Hoechst 33258 bound the same dsDNA oligomer with a 1:1 stoichiometry. The second and third order equilibrium constants for complexation were determined to be Log(K1K2) = 17.9 M(-2) and Log(K1K2K3) = 26.1 M(-3), respectively, for two of strongest binding FMGTs. From thermal melting experiments deltaTm for Hoechst 33258 was determined to be 10 degrees C while the deltaTm values for FMGTs ranged from 20-26 degrees C indicating the greater stability of the latter.  相似文献   

4.
Previous studies have shown that both murine and human anti-double-stranded DNA (anti-dsDNA) antibodies can develop from non-DNA-reactive B cells and suggest a crucial role for somatic mutation in dsDNA binding. However, since only a limited number of human anti-dsDNA antibodies have been analyzed previously, we could not exclude other mechanisms for the generation of anti-dsDNA antibodies in patients with systemic lupus erythematosus (SLE). Therefore, we isolated IgM anti-dsDNA antibodies from peripheral blood B cells of a patient with SLE. Three somatically mutated IgM anti-DNA antibodies with pathogenic potential (glomerular binding) were reverted to their germline configuration. Although all three IgM anti-dsDNA antibodies came from the same lupus patient, they displayed different profiles. Reversion to the germline sequence of autoantibodies A9 and B5 resulted in decreased dsDNA binding. In contrast, the germline form of G3-recognized dsDNA as well as the mutated counterpart. These results suggest that mutated IgM anti-dsDNA antibodies may develop from both DNA- and non-DNA-reactive B cells. The implications are that B cell activation occurs in response to self and non-self antigens, while selection after activation may be mediated by self antigen in SLE. Moreover, ineffective tolerance checkpoints may exist before and after antigen activation in SLE.  相似文献   

5.
In this paper a new method based on artificial neural networks (ANN), is introduced for identifying pathogenic antibodies in Systemic Lupus Erythmatosus (SLE). dsDNA binding antibodies have been implicated in the pathogenesis of this autoimmune disease. In order to identify these dsDNA binding antibodies, the protein sequences of 42 dsDNA binding and 608 non-dsDNA binding antibodies were extracted from Kabat database and encoded using a physicochemical property of their amino acids namely Hydrophilicity. Encoded antibodies were used as the training patterns of a general regression neural network (GRNN). Simulation results show that the accuracy of proposed method in recognizing dsDNA binding antibodies is 83.2%. We have also investigated the roles of the light and heavy chains of anti-dsDNA antibodies in binding to DNA. Simulation results concur with the published experimental findings that in binding to DNA, the heavy chain of anti-dsDNA is more important than their light chain.  相似文献   

6.
Interactions between human DNA polymerase beta and the template-primer, as well as gapped DNA substrates, have been studied using quantitative fluorescence titration and analytical ultracentrifugation techniques. In solution, human pol beta binds template-primer DNA substrates with a stoichiometry much higher than predicted on the basis of the crystallographic structure of the polymerase-DNA complex. The obtained stoichiometries can be understood in the context of the polymerase affinity for the dsDNA and the two ssDNA binding modes, the (pol beta)(16) and (pol beta)(5) binding modes, which differ by the number of nucleotide residues occluded by the protein in the complex. The analysis of polymerase binding to different template-primer substrates has been performed using the statistical thermodynamic model which accounts for the existence of different ssDNA binding modes and has allowed us to extract intrinsic spectroscopic and binding parameters. The data reveal that the small 8 kDa domain of the enzyme can engage the dsDNA in interactions, downstream from the primer, in both (pol beta)(16) and (pol beta)(5) binding modes. The affinity, as well as the stoichiometry of human pol beta binding to the gapped DNAs is not affected by the decreasing size of the ssDNA gap, indicating that the enzyme recognizes the ssDNA gaps of different sizes with very similar efficiency. On the basis of the obtained results we propose a plausible model for the gapped DNA recognition by human pol beta. The enzyme binds the ss/dsDNA junction of the gap, using its 31 kDa domain, with slight preference over the dsDNA. Binding only to the junction, but not to the dsDNA, induces an allosteric conformational transition of the enzyme and the entire enzyme-DNA complex which results in binding of the 8 kDa domain with the dsDNA. This, in turn, leads to the significant amplification of the enzyme affinity for the gap over the surrounding dsDNA, independent of the gap size. The presence of the 5'-terminal phosphate, downstream from the primer, has little effect on the affinity, but profoundly affects the ssDNA conformation in the complex. The significance of these results for the mechanistic model of the functioning of human pol beta is discussed.  相似文献   

7.
A method of preparing a thin polymer layer able to recognize double-stranded DNA (dsDNA) was developed by using 2-vinyl-4,6-diamino-1,3,5-triazine (VDAT) as a functional monomer for creating a DNA-imprinted polymer. The formation of hydrogen bonds between VDAT and A-T base pairs in dsDNA was confirmed by measuring the effects of VDAT on the melting point and the NMR and CD spectra of dsDNA. An imprinted polymer that can recognize dsDNA of the verotoxin gene was prepared by polymerizing VDAT, acrylamide, a crosslinking agent, and the template verotoxin dsDNA on a silanized glass surface. The specificity of this polymer layer for binding verotoxin dsDNA was investigated by using fluorescent-labelled dsDNAs. The fluorescence intensity of the polymer layer after binding verotoxin dsDNA was twice as high as after binding oligo(dG)-oligo(dC), indicating that verotoxin dsDNA was preferentially bound to the polymer imprinted with verotoxin dsDNA. The kinetics of verotoxin dsDNA binding to the imprinted polymer were analyzed by surface plasmon resonance measurements. The dissociation constant (KD) was low, of the order of 10(-9)M.  相似文献   

8.
Bacteriophage T4 gene 32 protein (gp32) is a single-stranded DNA (ssDNA) binding protein, and is essential for DNA replication, recombination and repair. While gp32 binds preferentially and cooperatively to ssDNA, it has not been observed to lower the thermal melting temperature of natural double-stranded DNA (dsDNA). However, in single-molecule stretching experiments, gp32 significantly destabilizes lambda DNA. In this study, we develop a theory of the effect of the protein on single dsDNA stretching curves, and apply it to the measured dependence of the DNA overstretching force on pulling rate in the presence of the full-length and two truncated forms of the protein. This allows us to calculate the rate of cooperative growth of single clusters of protein along ssDNA that are formed as the dsDNA molecule is stretched, as well as determine the site size of the protein binding to ssDNA. The rate of cooperative binding (ka) of both gp32 and of its proteolytic fragment *I (which lacks 48 residues from the C terminus) varies non-linearly with protein concentration, and appears to exceed the diffusion limit. We develop a model of protein association with the ends of growing clusters of cooperatively bound protein enhanced by 1-D diffusion along dsDNA, under the condition of protein excess. Upon globally fitting ka versus protein concentration, we determine the binding site size and the non-cooperative binding constants to dsDNA for gp32 and I. Our experiment mimics the growth of clusters of gp32 that likely exist at the DNA replication fork in vivo, and explains the origin of the "kinetic block" to dsDNA melting by gene 32 protein observed in thermal melting experiments.  相似文献   

9.
10.
The capacitive sensing method has been applied to study the binding of DNA with chloroquine phosphate. DNA was immobilized on a gold electrode surface, self-assembled with thioglycolic acid. The results of a quartz crystal impedance (QCI) study indicate that the reaction of double-strand DNA (dsDNA) with chloroquine includes a fast electrostatic attraction and a slow intercalation of chloroquine into double-strand helix. The real-time experimental data obtained by capacitive sensing also revealed two distinctive kinetics stages during binding of dsDNA with chloroquine, while only one stage exists during reaction of single-strand DNA (ssDNA) with chloroquine. The kinetic parameters were obtained by fitting the real-time experimental data using a two stage reaction model. The rate constants of electrostatic attraction for dsDNA and ssDNA are estimated as 0.014 and 0.018 s(-1), respectively. The rate constant of the second stage of dsDNA is 0.0011 s(-1).  相似文献   

11.
Many cells and double-stranded DNA (dsDNA) viruses contain an AAA+ ATPase that assembles into oligomers, often hexamers, with a central channel. The dsDNA packaging motor of bacteriophage phi29 also contains an ATPase to translocate dsDNA through a dodecameric channel. The motor ATPase has been investigated substantially in the context of the entire procapsid. Here, we report the sequential action between the ATPase and additional motor components. It is suggested that the contact of ATPase to ATP resulted in its conformational change to a higher binding affinity toward dsDNA. It was found that ATP hydrolysis led to the departure of dsDNA from the ATPase/dsDNA complex, an action that is speculated to push dsDNA to pass the connector channel. Our results suggest that dsDNA packaging goes through a combined effort of both the gp16 ATPase for pushing and the channel as a one-way valve to control the dsDNA translocation direction. Many packaging models have previously been proposed, and the packaging mechanism has been contingent upon the number of nucleotides packaged per ATP relative to the 10.5 bp per helical turn for B-type dsDNA. Both 2 and 2.5 bp per ATP have been used to argue for four, five or six discrete steps of dsDNA translocation. Combination of the two distinct roles of gp16 and connector renews the perception of previous dsDNA packaging energy calculations and provides insight into the discrepancy between 2 and 2.5 bp per ATP.  相似文献   

12.
Two non-self-complementary 17-mer double-stranded DNA (dsDNA) with four different central base pairs were designed to systematically investigate the binding affinity and sequence specificity of berberine with dsDNA by capillary zone electrophoresis (CZE). The data analysis with the Kenndler model proved only low affinity between dsDNA and berberine and suggested some weak binding preference of berberine for AATT-containing to GGCC-containing dsDNA. The binding constant, Ka, between berberine and dsDNA(AB) was about (1.0 +/- 0.7) x 10(3) M(-1). In addition, the separation of single-stranded DNA (ssDNA) from dsDNA under simple electrophoretic conditions enabled CZE to be a potentially alternative tool to check the extent of DNA annealing, which is usually done by the time-consuming and labor-intensive slab electrophoresis.  相似文献   

13.
Lao Y  Lee CG  Wold MS 《Biochemistry》1999,38(13):3974-3984
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein that is composed of subunits of 70, 32, and 14 kDa. RPA is required for multiple processes in cellular DNA metabolism. RPA has been reported to (1) bind with high affinity to single-stranded DNA (ssDNA), (2) bind specifically to certain double-stranded DNA (dsDNA) sequences, and (3) have DNA helix-destabilizing ("unwinding") activity. We have characterized both dsDNA binding and helix destabilization. The affinity of RPA for dsDNA was lower than that of ssDNA and precisely correlated with the melting temperature of the DNA fragment. The rates of helix destabilization and dsDNA binding were similar, and both were slow relative to the rate of binding ssDNA. We have previously mapped the regions required for ssDNA binding [Walther et al. (1999) Biochemistry 38, 3963-3973]. Here, we show that both helix-destabilization and dsDNA-binding activities map to the central DNA-binding domain of the 70-kDa subunit and that other domains of RPA are needed for optimal activity. We conclude that all types of RPA binding are manifestations of RPA ssDNA-binding activity and that dsDNA binding occurs when RPA destabilizes a region of dsDNA and binds to the resulting ssDNA. The 70-kDa subunit of all RPA homologues contains a highly conserved putative (C-X2-C-X13-C-X2-C) zinc finger. This motif directly interacts with DNA and contributes to dsDNA-binding/unwinding activity. Evidence is presented that a metal ion is required for the function of the zinc-finger motif.  相似文献   

14.
Recent in vitro methodologies for selection and directed evolution of proteins have concentrated not only on proteins with affinity such as single-chain antibody but also on enzymes. We developed a display technology for selection of T4 DNA ligase on ribosome because an in vitro selection method for DNA ligase had never been developed. The 3' end of mRNA encoding the gene of active or inactive T4 DNA ligase-spacer peptide fusion protein was hybridized to dsDNA fragments with cohesive ends, the substrate of T4 DNA ligase. After in vitro translation of the mRNA-dsDNA complex in a rabbit reticulocyte system, a mRNA-dsDNA-ribosome-ligase complex was produced. T4 DNA ligase enzyme displayed on a ribosome, through addition of a spacer peptide, is able to react with dsDNA in the complex. The complex expressing active ligase was biotinylated by ligation with another biotinylated dsDNA probe and selected with streptavidin-coated magnetic beads. We effectively selected active T4 DNA ligase from a small amount of protein. The gene of the active T4 DNA ligase was enriched 40 times from a mixture of active and inactive genes using this selection strategy. This ribosomal display strategy may have high potential to be useful for selection of other enzymes associated with DNA.  相似文献   

15.
Bacteriophage T7 gene 2.5 protein (gp2.5) is a single-stranded DNA (ssDNA)-binding protein that has essential roles in DNA replication, recombination and repair. However, it differs from other ssDNA-binding proteins by its weaker binding to ssDNA and lack of cooperative ssDNA binding. By studying the rate-dependent DNA melting force in the presence of gp2.5 and its deletion mutant lacking 26 C-terminal residues, we probe the kinetics and thermodynamics of gp2.5 binding to ssDNA and double-stranded DNA (dsDNA). These force measurements allow us to determine the binding rate of both proteins to ssDNA, as well as their equilibrium association constants to dsDNA. The salt dependence of dsDNA binding parallels that of ssDNA binding. We attribute the four orders of magnitude salt-independent differences between ssDNA and dsDNA binding to nonelectrostatic interactions involved only in ssDNA binding, in contrast to T4 gene 32 protein, which achieves preferential ssDNA binding primarily through cooperative interactions. The results support a model in which dimerization interactions must be broken for DNA binding, and gp2.5 monomers search dsDNA by 1D diffusion to bind ssDNA. We also quantitatively compare the salt-dependent ssDNA- and dsDNA-binding properties of the T4 and T7 ssDNA-binding proteins for the first time.  相似文献   

16.
We examined the double-stranded DNA (dsDNA) binding preference of the Saccharomyces cerevisiae Rad52 protein and its homologue, the Rad59 protein. In nuclease protection assays both proteins protected an internal sequence and the dsDNA ends equally well. Similarly, using electrophoretic mobility shift assays, we found the affinity of both Rad52 and Rad59 proteins for DNA ends to be comparable with their affinity for internal sequences. The protein-DNA complexes were also directly visualized using atomic force microscopy. Both proteins formed discrete complexes, which were primarily found (90-94%) at internal dsDNA sites. We also measured the DNA end binding behavior of human Rad52 protein and found a slight preference for dsDNA ends. Thus, these proteins have no strong preference for dsDNA ends over internal sites, which is inconsistent with their function at a step of dsDNA break repair that precedes DNA processing. Therefore, we conclude that S. cerevisiae Rad52 and Rad59 proteins and their eukaryotic counterparts function by binding to single-stranded DNA formed as intermediates of recombination rather than by binding to the unprocessed DNA double-strand break.  相似文献   

17.
Ig H and L chain contributions to autoimmune specificities   总被引:20,自引:0,他引:20  
An Ig H chain expression vector has been constructed by using the V region of 3H9, an antibody that binds ssDNA, dsDNA, and cardiolipin. The H chain construct was transfected into six hybridoma cell lines expressing Ig L chains. All resulting H and L chain combinations had at least some affinity for ssDNA, whereas five also bound dsDNA to a similar degree as 3H9. The loss of dsDNA binding was correlated with a single amino acid difference between two V kappa 8 L chains. A further characteristic of 3H9, its immunofluorescent staining pattern, was shared by four of the recombinant antibodies, whereas its specificity for cardiolipin was shared with five. The transfections reported here show that a V kappa 3 L chain confers specificity for an RNA-associated epitope and that a V kappa 21E L chain prevents cardiolipin binding. These experiments suggest that the 3H9 H chain contributes essential determinants required for binding to DNA as well as cardiolipin but that L chains can modulate or prevent this binding. L chains may also expand the specificity of a recombinant antibody.  相似文献   

18.
We have developed a new methodology for producing new molecules that bind to dsDNA using DNA-templated click chemistry. The click reactions between the minor groove binding peptide and acridine intercalators were accelerated by the addition of dsDNA. Furthermore, the resulting peptide–acridine conjugate showed a slightly stronger binding to dsDNA. These results indicate that the DNA-templated click chemistry is applicable for screening new binding molecules.  相似文献   

19.
Prp20/Srm1, a homolog of the mammalian protein RCC1 in Saccharomyces cerevisiae, binds to double-stranded DNA (dsDNA) through a multicomponent complex in vitro. This dsDNA-binding capability of the Prp20 complex has been shown to be cell-cycle dependent; affinity for dsDNA is lost during DNA replication. By analyzing a number of temperature sensitive (ts) prp20 alleles produced in vivo and in vitro, as well as site-directed mutations in highly conserved positions in the imperfect repeats that make up the protein, we have determined a relationship between the residues at these positions, cell viability, and the dsDNA-binding abilities of the Prp20 complex. These data reveal that the essential residues for Prp20 function are located mainly in the second and the third repeats at the amino-terminus and the last two repeats, the seventh and eighth, at the carboxyl-terminus of Prp20. Carboxyl-terminal mutations in Prp20 differ from amino-terminal mutations in showing loss of dsDNA binding: their conditional lethal phenotype and the loss of dsDNA binding affinity are both suppressible by overproduction of Gsp1, a GTP-binding constituent of the Prp20 complex, homologous to the mammalian protein TC4/Ran. Although wild-type Prp20 does not bind to dsDNA on its own, two mutations in conserved residues were found that caused the isolated protein to bind dsDNA. These data imply that, in situ, the other components of the Prp20 complex regulate the conformation of Prp20 and thus its affinity for dsDNA. Gsp1 not only influences the dsDNA-binding ability of Prp20 but it also regulates other essential function(s) of the Prp20 complex. Overproduction of Gsp1 also suppresses the lethality of two conditional mutations in the penultimate carboxyl-terminal repeat of Prp20, even though these mutations do not eliminate the dsDNA binding activity of the Prp20 complex. Other site-directed mutants reveal that internal and carboxyl-terminal regions of Prp20 that lack homology to RCC1 are dispensable for dsDNA binding and growth.  相似文献   

20.
Specific base recognition and binding between native double-stranded DNA (dsDNA) and complementary single-stranded DNA (ssDNA) of mixed base sequence is presented. Third-strand binding, facilitated and stabilized by a DNA intercalator, YOYO-1, occurs within 5 min at room temperature. This triplex binding capability has been used to develop a homogeneous assay that accurately detects 1-, 2-, or 3-bp mutations or deletions in the dsDNA target. Every type of 1-bp mismatch can be identified. The assay can reliably distinguish homozygous from heterozygous polymerase chain reaction (PCR)-amplified genomic dsDNA, thus providing a highly sensitive clinical diagnostic assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号