首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorus metabolites and intracellular pH have been examined in the slime mold Dictyostelium discoideum by non-destructive 31P-NMR measurements. In a spectrum from a suspension of aerobic amoebae, the major peaks are inorganic phosphate, nucleotide di- and triphosphates. In the corresponding perchloric acid extract, resonances originating from purine and pyrimidine nucleotides are resolved. Adenine nucleotides are the most abundant components, but the other nucleotides are present in significant amounts. In a spectrum from intact spores in a dormant state, only inorganic phosphate and polyphosphates are detected and nucleotides are no longer present in large amounts.Of particular importance is the ability to observe separately in aerobic amoebae the resonance of inorganic phosphate localized in two different cell compartments: the cytosol and the mitochondria. The cytosolic pH and mitochondrial pH have been measured as 6.7 and 7.7, respectively, on the basis of intracellular inorganic phosphate chemical shifts. They are essentially unaffected over a large range of external pH and they are not modified transiently or permanently during the initiation of the developmental program of the organism. A weak acid, such as propionate, which modifies the progression of differentiation by favoring prestalk cells, perturbs intracellular pH gradients by selectively decreasing mitochondrial pH without any effect on cytosolic pH.  相似文献   

2.
We have used phosphorus-31 nuclear magnetic resonance to determine intracellular pH in the cellular slime mold Dictyostelium discoideum. We devised an air-lift circulator to maintain the dense cell suspensions in a well-oxygenated and well-stirred state while causing minimal perturbation to the sample flowing through the detector coils. Cells continued to develop normally in this set-up. Spectra acquired under these conditions typically show two peaks in the inorganic phosphate region corresponding to pH values of 7.16 +/- 0.03 and 6.48 +/- 0.02. These peaks are believed to represent the mitochondrial and cytosolic compartments respectively, based on a comparison of these values with published data and the collapse of the two compartments upon addition of the mitochondrial uncoupler carbonyl cyanide 4-(trifluoromethoxy)-phenylhydrazone. Dictyostelium cells show a remarkable degree of intracellular pH homeostasis. Both mitochondrial and cytosolic pH remained unchanged as extracellular pH was varied from 4.3 to 8.1. There was also no apparent change in the pH of either compartment after up to 13.5 hours' development in suspension.  相似文献   

3.
A sugar phosphomonoester, myo-inositol hexakisphosphate (phytic acid), has been identified as a major phosphorylated metabolite in Dictyostelium discoideum amoeba. Its intracellular concentration was estimated to be 0.7 mM. The identification was made in perchloric acid extracts on the basis of 31P-NMR chemical shift values and their variations with pH, by addition of authentic compound and by hydrolysis with wheat phytase. Perchloric acid extracts were prepared so as to avoid losses of insoluble salts of polyphosphorylated compounds with divalent cations. The glycolytic intermediate, 3-phosphoglycerate, accumulated intracellularly in amoebae incubated in the presence of fluoride. The pH sensitive NMR signal of 3-phosphoglycerate was used to monitor cytosolic pH and a value of pH 7.4 was found in aerobic Dictyostelium amoebae.  相似文献   

4.
The intracellular pH of an acidophilic unicellular alga, Cyanidiumcaldarium, was determined as a function of external pH by 31Pnuclear magnetic resonance. The algal cells incubated underaerobic conditions or under anaerobic and illuminated conditionsmaintained the intracellular pH in the range from 6.8 to 7.0even when the external pH was changed from 1.2 to 8.4. Underanaerobic and dark conditions, however, the intracellular pHacidified at the acidic pH region of the external medium. Theacidified intracellular pH reversibly returned to neutral eitheron aeration or illumination. The results indicate that, in Cyanidiumcells growing in extremely acidic environments, an active H+efflux (H+ pump) which depends on metabolic activity (respirationor photosynthesis) is essential to maintain the intracellularpH at a constant physiological level against the passive H+leakage due to the steep pH gradient across the cell membrane. (Received March 19, 1986; Accepted July 17, 1986)  相似文献   

5.
6.
Amoebae of the slime mold D. discoideum were studied by phosphorus nuclear magnetic resonance. Under aerobic conditions, major intracellular phosphate compounds included phosphomonoesters, inorganic phosphate (Pi), ADP and ATP. Nucleotides were essentially as magnesium complexes. Two intracellular Pi resonances were clearly resolved and the corresponding pHs determined by the chemical shifts characteristics were 7.7 and 6.7. These intracellular pHs were strictly constant over an extracellular pH range between 5.0 and 7.5. The two cellular compartments defined by the Pi resonances were assigned to mitochondria (pH 7.7) and cytosol (pH 6.7) on the basis of their response to anaerobiosis or to carbonylcyanide-m-chloro phenylhydrazone (CCCP), an uncoupler of oxidative phosphorylation, which equilibrate the two intracellular pHs.  相似文献   

7.
F Brénot  L Aubry  J B Martin  M Satre  G Klein 《Biochimie》1992,74(9-10):883-895
We have examined the pH of the various endosomal compartments in the amoebae of the cellular slime mould Dictyostelium discoideum. This was accomplished both by fluorescence and by in vivo 31P-NMR methods. The fluid-phase marker, fluorescein-labeled dextran, was fed to the amoebae to report the average pH of their endocytic vesicles. During the progressive loading of successive endosomal compartments, we observed an early acidification down to a minimum value of pH < or = 5.3 after 30 min at 20 degrees C followed by an increase to an average pH of 5.8 when all the endosomal compartments were loaded by the fluid-phase marker. The weak fluorescence intensity of FITC-dextran at acidic pH precluded a more detailed investigation and we checked various phosphonate compounds as potential 31P-NMR pH probes for the endosomal compartments. Two molecules, aminomethylphosphonate and 2-aminoethylphosphonate, were selected for this study because of the large amplitudes of their chemical shift variation with pH (2 and 2.5 ppm, respectively) and their acidic pKs of 5.5 and 6.3, respectively. They were only moderately toxic (IC50% approximately 10 mM) towards both the axenic growth and the differentiation program of Dictyostelium amoebae. Internalization of the two aminophosphonates occurred only through the fluid-phase pinocytosis pathway as revealed by the full inhibition of their entry with 1 mM vanadate or 7.5 mM caffeine, two previously characterized inhibitors of endocytosis in Dictyostelium. We found that in vivo 31P-NMR of amoebae suspensions incubated with the aminophosphonates allowed the detection of three distinct intracellular compartments at pH 4.3, 5.8-6.0 and 7.3. Kinetics of aminophosphonate entry were analyzed and the results allowed us to reconstruct the time course for the acidification sequence during endocytosis. The data are consistent with the hypothesis that in Dictyostelium amoebae phosphonates occupy a highly acidic early endosomal compartment (t1/2 = 18 min; pH 4.3) before reaching a less acidic late endosomal/prelysosomal compartment (pH 5.8-6.0) from where they are immediately transported to, and trapped in, the cytoplasm (pH 7.3).  相似文献   

8.
Salt stress-induced changes of intracellular pH and in levelsof phosphorous compounds were monitored in intact root tipsof barley seedlings (Hordeum vulgare cv. Akashin-riki) by invivo 31P-nuclear magnetic resonance (NMR) spectroscopy. Vacuolaralkalization was observed after treatment with both 300 and500 mM NaCl. Much of the observed apparent alkalization of thecytoplasm was eliminated when the effect of Na+ ions on thetitration curve was considered. Within 1 h after the initiationof salt stress, levels of glucose-6-phosphate and UDP-glucosedecreased markedly, and such decreases might lead directly orindirectly to cell death. Simultaneous measurements of the externaland intracellular pH revealed the promotion of external acidificationand internal alkalization during salt stress. Possible mechanismsof Na+/H+ antiport at the tonoplast and the role of proton-pumpin the plasma membrane are discussed. 3Present address: Shijonawate Gakuen Women's Junior College,Daito, Osaka, 574 Japan.  相似文献   

9.
Methylphosphonate in conjunction with 31P-NMR spectroscopy was used for the measurement of transmembrane delta pH in human erythrocytes stored at 4 degrees C for up to 5 weeks in a nutrient medium. Intra- and extracellular pH was determined using calibration curves based on the pH-dependent separation between the NMR resonances of methylphosphonate and orthophosphate (Pi). A comprehensive statistical procedure is presented for the determination of the variance of NMR-based pH estimates. The entry of methylphosphonate into erythrocytes was more rapid at low pH and uptake was fully inhibited by the band 3 reagent, disodium 4,4-diisothiocyano-2,2'-disulphonic acid stilbene. The distribution ratio of methylphosphonate concentration inside and outside the cells was used to calculate the membrane potential; the analysis depends on a consideration of the Donnan equilibrium for an anion with one or two charges. Furthermore, the analysis does not depend on the pH estimates but relies solely on concentration estimates. The chemical shift of methylphosphonate was not subject to the variations associated with specific intracellular binding encountered with many other phosphorus compounds, including Pi. On the other hand, the ionic strength dependence of the chemical shift of methylphosphonate, contrary to earlier reports, is comparable in magnitude (but opposite in sign) to that of Pi.  相似文献   

10.
11.
To evaluate the accuracy of pH determination by 31P-NMR, factors which influence the pK value of phosphate were appraised on the basis of the titration of 1 mM phosphate buffer solution. When the method is used for the determination of cytoplasmic pH, ionic strength is the major factor causing shifts of apparent pK (pK') value, and the magnitude of the shift can be predicted from the ionic strength calculated by means of the Debye-Hückel equation. Ions (Na+, K+, Mg2+, and Ca2+) and salivary protein affected the pK' value by 0.1 to 0.3 units in solution with a given ionic strength depending on the species of ion. The form of the titration curve varied with temperature. Based on these results, the value of 6.75 was obtained with the uncertainty of 0.12 for the intracellular pK' of frog muscle at 24 degrees C.  相似文献   

12.
Dictyostelium discoideum cells synthesize and secrete the chemoattractant cAMP within minutes after chemotactic stimulation. During development, this signal-relay process is instrumental in cell aggregation, pattern formation, and differentiation. Cyclic AMP is known to accumulate inside the cell before secretion. In this study we investigated the subcellular localization of the nascent cAMP. After chemotactic stimulation at 0 degrees C and subsequent accumulation of intracellular cAMP, the newly synthesized chemoattractant could be released by gently opening cells in two different ways. Both methods make the cytosolic compartment accessible, whereas intracellular compartments surrounded by a membrane remain largely intact. The first method involved rapid lysis by forced passage through a 5-micron pore-size Nuclepore filter. The second technique was electropermeabilization under carefully controlled conditions that ensured the formation of small, stable pores in the plasma membrane. These pores allowed the passage of small molecules, such as cAMP, but not of macromolecules. To confirm the selectivity for the plasma membrane of both methods, we showed that a typical vesicular cell compartment, the lysosome, remained intact. Both procedures immediately released all intracellularly accumulated cAMP. We interpret our results as strong evidence for accumulation of nascent cAMP in the cytosolic compartment rather than in a vesicular compartment before it is secreted. This implies that cAMP secretion takes place via a trans-membrane transport mechanism, rather than by exocytosis.  相似文献   

13.
The charge state of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was determined as a function of pH by way of 31P-NMR spectroscopy. The pK values for the first protonation of the phosphomonoester residues in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate were found to be 6.2 and 6.6, respectively, for the 4-phosphate moiety, and 7.7 for the 5-phosphate moiety.  相似文献   

14.
Indicative of cell surface P2X ion channel activation, extracellular ATP evokes a rapid and transient calcium influx in the model eukaryote Dictyostelium discoideum. Five P2X-like proteins (dP2XA–E) are present in this organism. However, their roles in purinergic signaling are unclear, because dP2XA proved to have an intracellular localization on the contractile vacuole where it is thought to be required for osmoregulation. To determine functional properties of the remaining four dP2X-like proteins and to assess their cellular roles, we recorded membrane currents from expressed cloned receptors and generated a quintuple knock-out Dictyostelium strain devoid of dP2X receptors. ATP evoked inward currents at dP2XB and dP2XE receptors but not at dP2XC or dP2XD. β,γ-Imido-ATP was more potent than ATP at dP2XB but a weak partial agonist at dP2XE. Currents in dP2XB and dP2XE were strongly inhibited by Na+ but insensitive to copper and the P2 receptor antagonists pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid and suramin. Unusual for P2X channels, dP2XA and dP2XB were also Cl-permeable. The extracellular purinergic response to ATP persisted in p2xA/B/C/D/E quintuple knock-out Dictyostelium demonstrating that dP2X channels are not responsible. dP2XB, -C, -D, and -E were found to be intracellularly localized to the contractile vacuole with the ligand binding domain facing the lumen. However, quintuple p2xA/B/C/D/E null cells were still capable of regulating cell volume in water demonstrating that, contrary to previous findings, dP2X receptors are not required for osmoregulation. Responses to the calmodulin antagonist calmidazolium, however, were reduced in p2xA/B/C/D/E null cells suggesting that dP2X receptors play a role in intracellular calcium signaling.  相似文献   

15.
《FEBS letters》1986,196(1):167-170
Lactate production measurements during the cell cycle of synchronized populations of Dictyostelium discoideum cells reveal cyclic variations in glycolysis which correspond with pHi oscillations which were discovered by us previously [(1985) Cell, in press]. Aerobic lactate production varies about 6-fold during the cell cycle and the lactate maxima correlate with (~ 0.25 pH unit) cyclic increases in pH. However, artificially altering pHi using weak acids or bases does not influence the rate of lactate production in asynchronous cell populations. This result suggests that the cyclic variations in pHi and those in glycolytic rate are not causally related events.  相似文献   

16.
A variety of studies have shown that differentiation of Dictyostelium discoideum amoebae in the presence of cAMP is strongly influenced by extracellular pH and various other treatments thought to act by modifying intracellular pH. Thus conditions expected to lower intracellular pH markedly enhance stalk cell formation, while treatments with the opposite effect favor spores. To directly test the idea that intracellular pH is a cell-type-specific messenger in Dictyostelium, we have measured intracellular pH in cells exposed to either low extracellular pH plus weak acid or high extracellular pH plus weak base using 31P nuclear magnetic resonance (NMR). Our results show that there is no significant difference in intracellular pH (cytosolic or mitochondrial) between pH conditions which strongly promote either stalk cell or spore formation, respectively. We have also examined the effects of external pH on the expression of various cell-type-specific markers, particularly mRNAs. Some mRNAs, such as those of the prestalk II (PL1 and 2H6) and prespore II (D19, 2H3) categories, are strongly regulated by external pH in a manner consistent with their cell-type specificity during normal development. Other markers such as mRNAs D14 (prestalk I), D18 (prespore I), 10C3 (common), or the enzyme UDP-galactose polysaccharide transferase are regulated only weakly or not at all by external pH. In sum, our results show that modulation of phenotype by extracellular pH in cell monolayers incubated with cAMP does not precisely mimic the regulation of stalk and spore pathways during normal development and that this phenotypic regulation by extracellular pH does not involve changes in intracellular pH.  相似文献   

17.
Seventeen normal subjects performed maximal wrist flexion exercise with continuous monitoring of forearm muscle pH and H2PO4-, measured with 31P nuclear magnetic resonance, and muscle fatigue, expressed as a percentage of decline in maximal developed force. Four minutes of exercise (flexion duration = 1 s) reduced maximal developed force from 100 to 74 +/- 9% and pH from 6.99 +/- 0.04 to 6.17 +/- 0.33 and increased H2PO4- to 927 +/- 401% of resting levels. In all subjects, linear relationships were noted between developed force and pH (r = 0.90 +/- 0.08) and between developed force and H2PO4- (r = -0.89 +/- 0.08). Doubling the contraction duration to 2 s produced more rapid changes in developed force, pH, and H2PO4- but no change in the relationship of force to pH and H2PO4-. Two minutes of submaximal exercise before maximal exercise significantly reduced pH and increased H2PO4-. During subsequent maximal exercise, the relationship between developed force and H2PO4- remained unchanged. In contrast, the relationship between developed force and pH was shifted leftward; muscle pH remained lower throughout maximal exercise, and developed force remained comparable to that noted during control exercise. These observations suggest that muscle fatigue during intense short-term exercise is primarily caused by an increase in intramuscular H2PO4- rather than by a decrease in intramuscular pH.  相似文献   

18.
19.
A new method has been developed to assess the minimum complexity and relationships of those pathways (developmental timers) which time the consecutive stages of a developing system (Soll, 1983). This method has been applied to the morphogenetic program of Dictyostelium discoideum and has resulted in (1) a minimum estimate of the number of components comprising the timers for the first seven stages of morphogenesis, (2) a characterization of the temperature sensitivities of these components including demonstration of a reversible timer component, (3) detailed temporal definition of a number of transition points between rate-limiting components including a major branch point for the onset of several independent timer components coincident with the onset of aggregation, and (4) a temporal model for the relationships between the timers of the seven consecutive morphogenetic stages, including several examples of parallel timers.  相似文献   

20.
Forty aggregation-deficient mutants of Dictyostelium discoideum were screened for changes in intracellular cAMP during the first 10 hr of starvation. The pools in 39 of the mutants remained low and relatively static during this period. However, amoebae of one mutant, strain HC151, exhibited significantly elevated levels of intracellular cAMP during vegetative growth and for several hours after starvation. A more detailed analysis of this mutant indicated that the elevated cAMP pools in these cells are a consequence of the premature appearance and partial activation of an adenylate cyclase. The mutation(s) altering adenylate cyclase regulation in this strain appears to map in linkage group IV. Complementation tests between strain HC151 and another mutant, HH201, which has recently been shown to produce an adenylate cyclase activity precociously [1], indicated that the mutations affecting adenylate cyclase activity in these strains map at different loci. Although both of these mutations behave recessively in heterozygous diploids with respect to gross development, an examination of early cAMP metabolism and terminal spore differentiation in these diploids suggest that these mutations are at least partially expressed during some stage(s) of the developmental cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号