首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trait and functional trait approaches have revolutionized ecology improving our understanding of community assembly, species coexistence, and biodiversity loss. Focusing on traits promotes comparability across spatial and organizational scales, but terms must be used consistently. While several papers have offered definitions, it remains unclear how ecologists operationalize “trait” and “functional trait” terms. Here, we evaluate how researchers and the published literatures use these terms and explore differences among subdisciplines and study systems (taxa and biome). By conducting both a survey and a literature review, we test the hypothesis that ecologists’ working definition of “trait” is adapted or altered when confronting the realities of collecting, analyzing and presenting data. From 486 survey responses and 712 reviewed papers, we identified inconsistencies in the understanding and use of terminology among researchers, but also limited inclusion of definitions within the published literature. Discrepancies were not explained by subdiscipline, system of study, or respondent characteristics, suggesting there could be an inconsistent understanding even among those working in related topics. Consistencies among survey responses included the use of morphological, phonological, and physiological traits. Previous studies have called for unification of terminology; yet, our study shows that proposed definitions are not consistently used or accepted. Sources of disagreement include trait heritability, defining and interpreting function, and dealing with organisms in which individuals are not clearly recognizable. We discuss and offer guidelines for overcoming these disagreements. The diversity of life on Earth means traits can represent different features that can be measured and reported in different ways, and thus, narrow definitions that work for one system will fail in others. We recommend ecologists embrace the breadth of biodiversity using a simplified definition of “trait” more consistent with its common use. Trait‐based approaches will be most powerful if we accept that traits are at least as diverse as trait ecologists.  相似文献   

2.
Functional traits have long been considered the ‘holy grail’ in community ecology due to their potential to link phenotypic variation with ecological processes. Advancements across taxonomic disciplines continue to support functional ecology's objective to approach generality in community assembly. However, a divergence of definitions, aims and methods across taxa has created discord, limiting the field's predictive capacity. Here, we provide a guide to support functional ecological comparisons across taxa. We describe advances in cross‐taxa functional research, identify gaps in approaches, synthesize definitions and unify methodological considerations. When deciding which traits to compare, particularly response traits, we advocate selecting functionally analogous traits that relate to community assembly processes. Finally, we describe at what scale and for which questions functional comparisons across taxa are useful and when other approaches may be more constructive. Our approach promotes standardized methods for integrative research across taxa to identify broad trends in community assembly.  相似文献   

3.
4.
淡水鱼类功能生态学研究进展   总被引:5,自引:3,他引:2  
在全球变化和人类活动的影响下,生物多样性正以前所未有的速度丧失,全球生物正经受第六次生物多样性危机。淡水生态系统是最脆弱的生态系统之一。淡水鱼类作为淡水生态系统的重要组成部分,承受着日趋严重的气候变化、栖息地退化、生物入侵和过度捕捞等压力,面临巨大的威胁。在此背景下,如何准确评估鱼类种群和群落对环境变化的响应,以及鱼类群落结构和功能的变化对生态系统功能的影响是淡水鱼类多样性和淡水生态系统保护的关键问题。近年来,淡水鱼类功能生态学的快速发展为解答这一问题提供了一个框架。系统地介绍了淡水鱼类功能生态学主要研究内容、方法、进展及其应用,并着重介绍了淡水鱼类功能特征及其与环境的关系、环境变化下的功能生态学响应研究。据此提出了淡水鱼类功能生态学未来的重点研究方向,指出了其在鱼类多样性保护和资源利用等领域的应用前景。  相似文献   

5.
Fungi play a key role in soil–plant interactions, nutrient cycling and carbon flow and are essential for the functioning of arctic terrestrial ecosystems. Some studies have shown that the composition of fungal communities is highly sensitive to variations in environmental conditions, but little is known about how the conditions control the role of fungal communities (i.e., their ecosystem function). We used DNA metabarcoding to compare taxonomic and functional composition of fungal communities along a gradient of environmental severity in Northeast Greenland. We analysed soil samples from fell fields, heaths and snowbeds, three habitats with very contrasting abiotic conditions. We also assessed within‐habitat differences by comparing three widespread microhabitats (patches with high cover of Dryas, Salix, or bare soil). The data suggest that, along the sampled mesotopographic gradient, the greatest differences in both fungal richness and community composition are observed amongst habitats, while the effect of microhabitat is weaker, although still significant. Furthermore, we found that richness and community composition of fungi are shaped primarily by abiotic factors and to a lesser, though still significant extent, by floristic composition. Along this mesotopographic gradient, environmental severity is strongly correlated with richness in all fungal functional groups: positively in saprotrophic, pathogenic and lichenised fungi, and negatively in ectomycorrhizal and root endophytic fungi. Our results suggest complex interactions amongst functional groups, possibly due to nutrient limitation or competitive exclusion, with potential implications on soil carbon stocks. These findings are important in the light of the environmental changes predicted for the Arctic.  相似文献   

6.
Pegg  Mark A.  Pierce  Clay L. 《Hydrobiologia》2002,479(1-3):155-167
Human alteration is commonplace among large rivers and often results in changes in the flow regime which can lead to changes in fish community structure. We explored the features of fish community structure, morphological characteristics, functional composition, and life-history attributes in relation to six unique flow regimes in the Missouri and lower Yellowstone rivers where we found significant differences in community composition and abundance. The clearest pattern was the distinction between the channelized portion of the river below the mainstem reservoirs and all other parts of the Missouri and lower Yellowstone rivers due to a marked reduction of species richness above the reservoirs. We also found morphological, functional, and life-history differences among the flow units, with the inter-reservoir communities consisting of slightly more generalist characteristics. Our results suggest some relation between flow and fish community structure, but that human alteration may have the strongest influence in distinguishing community differences in the Missouri and lower Yellowstone rivers.  相似文献   

7.
Damesella paronai is the earliest enrolled odontopleurid trilobite to be found in the fossil record. Whereas its interlocking devices were very poorly developed, its trunk shows advanced articulations, which only lack an articulating facet, though an anterior notch is present in the outer part of each pleura. Its body pattern and structures did not allow it an encapsulated enrolment style. On the other hand, it is coeval with the early asaphid Monkaspis daulis, found in the same beds and at the same level. This co-inhabiting trilobite had a more advanced structure that enabled it to achieve a fully enrolled, encapsulated style. These superior structures enhance the preservation of enrolled specimens of M. daulis, and it seems to be generally the case that more elegant structures actually improve preservation. The evolutionary trends of the lineages of these two trilobites show that while odontopleurids were very conservative, using the same enrolment style throughout their history, the asaphids developed different enrolment styles, which was one factor in giving them a capacity to occupy different ecological niches and a greater range of environments.  相似文献   

8.
9.
10.
11.
The existence of a coordination between leaf and stem economic spectra in woody species has been postulated repeatedly in the literature, with contrasting results. Here, we postulated that this coordination is conditioned by climate factors, being stronger in stressful environments. To test this hypothesis we explored the coordination between leaf and stem economic spectra in a seasonally dry forest in central Argentina and at the global scale, we analysed if the outcome of their coordination varies along a climatic gradient. At the local scale, we characterized leaf and stem economic spectra in 37 woody species by measuring six leaf and stem functional traits related to resource acquisition and use, and two functional traits used as proxies of water transport and use capacities. At the global scale, a meta‐regression was performed to analyse if the outcome of the coordination among leaf and stem traits varies along gradients of the mean precipitation of the driest quarter and of the minimum temperature of the coldest month. At the local scale, we observed a high integration among the measured leaf and stem traits, and this coordination seemed to be linked to hydraulic properties. At the global scale, we found not only that the overall weighted mean effect size of the correlation between specific leaf area and wood density was significant and negative but also that the coordination between leaf and stem traits seemed to be shaped by climate and tends to become stronger under harsh climate conditions. Furthermore, although our results seem to suggest that their coordination is context‐dependent, alternative strategies could be observed under stressful conditions.  相似文献   

12.
Aims Root systems play an essential role in grassland functioning in both acquisition and storage of resources. Nevertheless, root functional traits have not received as much attention as those measured on above-ground organs, and little is known about their relations. Our objectives were to test whether morphological and root system traits allowed identification of grass species' functional strategies and to determine whether a relation exists between above- and below-ground traits.Methods Functional traits of root tissues (specific root length, diameter, tissue density and nitrogen concentration), whole root systems (root mass, root length density, root mass percentage below a depth of 20cm and fine root %) and two major leaf traits (specific leaf area and leaf dry matter content) were determined under field conditions and their relations were analysed in eleven perennial temperate Poaceae species.Important findings Canonical correspondence analysis along Axis 1 revealed a gradient of species, from those with deep, dense and coarse root systems with a large root mass to those with shallow root systems, thin roots and high specific root length; this suggests strong correlations among root traits. Correlations between specific root length and specific leaf area reveal two groups of species, which probably indicates different drought-tolerance capacities. Root trait syndromes enable ranking grasses along a gradient from conservative-strategy species (from stressful habitats), which display a deep and coarse root system, to acquisitive species (from rich and moist meadows), which display a shallow and thin root system. Although both types display similar above-ground strategies, drought-tolerant species have lower specific root lengths than drought-sensitive species, revealing more conservative root strategies.  相似文献   

13.
14.
Coral reef ecosystems are under increasing pressure by multiple stressors that degrade reef condition and function. Although improved management systems have yielded benefits in many regions, broad‐scale declines continue and additional practical and effective solutions for reef conservation and management are urgently needed. Ecological interventions to assist or enhance ecosystem recovery are standard practice in many terrestrial management regimes, and they are now increasingly being implemented in the marine environment. Intervention activities in coral reef systems include the control of coral predators (e.g. crown‐of‐thorns starfish), substrate modification, the creation of artificial habitats and the cultivation, transplantation, and assisted recruitment of corals. On many coastal reefs, corals face competition and overgrowth by fleshy macroalgae whose abundance may be elevated due to acute disturbance events, chronic nutrient enrichment, and reduced herbivory. Active macroalgae removal has been proposed and trialed as a management tool to reduce competition between algae and corals and provide space for coral recruitment, in the hope of restoring the spatial dominance of habitat‐forming corals. However, macroalgae removal has received little formal attention as a method of reef restoration. This review synthesizes available knowledge of the ecological role of macroalgae on coral reefs and the potential benefits and risks associated with their active removal.  相似文献   

15.
Different animal intraspecific classes commonly differ in their prey selection. Such differences in feeding ecology are thought to reduce resource competition between classes, but other factors (i.e. behavioural, morphological, and physiological differences) also contribute to this widespread phenomenon. Although several studies have correlated the size of the feeding apparatus with prey selection in many animals, few studies have examined how the shape of the feeding apparatus is related to prey selection. Furthermore, even though the dietary regimen of many animals changes during ontogeny, few studies have examined how shape changes in the feeding apparatus may be related to these ontogenetic dietary shifts. Here we address these issues by examining how head shape, head size and prey selection change over ontogeny in adult males, adult females and juveniles of the cottonmouth snake Agkistrodon piscivorus . Our scaling data for head characteristics showed that all head measurements in adult male and female A. piscivorus scaled with significant negative allometry, whereas juvenile head measurements typically scaled isometrically, except for head volume (positive) and head length (negative). Thus, juveniles have relatively broad and high, but short, heads. Large adult male and female A. piscivorus have relatively small head dimensions overall. Thus, juveniles appear to undergo a rapid change in head volume, which subsequently slows considerably as sexual maturity is achieved. However, our multivariate analysis of size-adjusted head dimensions showed that juveniles differed only slightly in their head shape compared with adult male and female A. piscivorus . In general, prey size increased with snake size across all age and sex groups, but an ontogenetic shift in prey type was not detected in either males or females.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 151–159.  相似文献   

16.
The selection of ecological indicators is an important step toward more effective restoration monitoring. The debate between Reid (2015) and Durigan and Suganuma (2015) regarding the usefulness of species composition for monitoring restoration trajectory is timely and salient, but it lacks a middle way proposal to balance ecological relevance and practical viability. We propose a way forward to resolving this debate, namely using easily measurable functional traits, a type of compositional measure, as an indicator. Assessing functional composition trajectory may help overcome some limitations with taxonomic identification and provide more meaningful outcomes to evaluate restoration success.  相似文献   

17.
Andrew Siefert  Cyrille Violle  Loïc Chalmandrier  Cécile H. Albert  Adrien Taudiere  Alex Fajardo  Lonnie W. Aarssen  Christopher Baraloto  Marcos B. Carlucci  Marcus V. Cianciaruso  Vinícius de L. Dantas  Francesco de Bello  Leandro D. S. Duarte  Carlos R. Fonseca  Grégoire T. Freschet  Stéphanie Gaucherand  Nicolas Gross  Kouki Hikosaka  Benjamin Jackson  Vincent Jung  Chiho Kamiyama  Masatoshi Katabuchi  Steven W. Kembel  Emilie Kichenin  Nathan J. B. Kraft  Anna Lagerström  Yoann Le Bagousse‐Pinguet  Yuanzhi Li  Norman Mason  Julie Messier  Tohru Nakashizuka  Jacob McC. Overton  Duane A. Peltzer  I. M. Pérez‐Ramos  Valério D. Pillar  Honor C. Prentice  Sarah Richardson  Takehiro Sasaki  Brandon S. Schamp  Christian Schöb  Bill Shipley  Maja Sundqvist  Martin T. Sykes  Marie Vandewalle  David A. Wardle 《Ecology letters》2015,18(12):1406-1419
Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta‐analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole‐plant (e.g. plant height) vs. organ‐level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait‐based community and ecosystem studies.  相似文献   

18.
Ecological studies are increasingly moving towards trait‐based approaches, as the evidence mounts that functions, as opposed to taxonomy, drive ecosystem service delivery. Among ecosystem services, biological control has been somewhat overlooked in functional ecological studies. This is surprising given that, over recent decades, much of biological control research has been focused on identifying the multiple characteristics (traits) of species that influence trophic interactions. These traits are especially well developed for interactions between arthropods and flowers – important for biological control, as floral resources can provide natural enemies with nutritional supplements, which can dramatically increase biological control efficiency. Traits that underpin the biological control potential of a community and that drive the response of arthropods to environmental filters, from local to landscape‐level conditions, are also emerging from recent empirical studies. We present an overview of the traits that have been identified to (i) drive trophic interactions, especially between plants and biological control agents through determining access to floral resources and enhancing longevity and fecundity of natural enemies, (ii) affect the biological control services provided by arthropods, and (iii) limit the response of arthropods to environmental filters, ranging from local management practices to landscape‐level simplification. We use this review as a platform to outline opportunities and guidelines for future trait‐based studies focused on the enhancement of biological control services.  相似文献   

19.
Much of what remains of the Earth's tropical forests is embedded within agricultural landscapes, where forest is reduced and fragmented. As native forest ungulates are critical to maintaining forest function, it is imperative to understand how this functional group responds to declines in forest cover and connectivity resulting from agricultural expansion. We addressed this issue by evaluating selection of forest cover and forest connectivity by a key native ungulate of Neotropical forests, the white‐lipped peccary (Tayassu pecari Link 1795, Tayassuidae, Cetartiodactyla), in agricultural landscapes of Brazil. We evaluated selection using compositional analysis at two hierarchical levels, landscape, and home range. From 2013 to 2019, we GPS‐tracked eight white‐lipped peccary herds in Southwest Brazil, resulting in a total of 14,460 GPS locations. We found that herds can live in landscapes with a wide range of forest cover (35%–81% of home ranges covered by native forest), with significant, but not strong, selection at the landscape level (p = .045). Nevertheless, herds strongly select for forest cover within their home ranges (81%–97% of locations within native forest; highly significant selection at the home‐range level: p = .008). As for connectivity, herds significantly select the largest, most connected forest fragments at the landscape level (p = .04), but not at the home‐range level (p = .07). Our results support that Neotropical forests within agricultural landscapes need to be well connected in order to preserve this key native ungulate and maintain long‐term forest function. Abstract in Portuguese is available with online material.  相似文献   

20.
Feeding behavior, prey type, and habitat appear to be associated with the morphological design of body, fluke, and flippers in baleen whales. Morphometric data from whaling records and recent stranding events were compiled, and morphometric parameters describing the body length, and fluke and flipper dimensions for an "average" blue whale Balaenoptera musculus, humpback whale Megaptera novaeangliae, gray whale Eschrichtius robustus, and right whale Eubalaena glacialis were determined. Body mass, body volume, body surface area, and fluke and flipper surface areas were estimated. The resultant morphological configurations lent themselves to the following classifications based on hydrodynamic principles: fast cruiser, slow cruiser, fast maneuverer, and slow maneuverer. Blue whales have highly streamlined bodies with small, high aspect ratio flippers and flukes for fast efficient cruising in the open ocean. On the other hand, the rotund right whale has large, high aspect ratio flukes for efficient slow speed cruising that is optimal for their continuous filter feeding technique. Humpbacks have large, high aspect ratio flippers and a large, low aspect ratio tail for quick acceleration and high-speed maneuvering which would help them catch their elusive prey, while gray whales have large, low aspect ratio flippers and flukes for enhanced low-speed maneuvering in complex coastal water habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号