共查询到6条相似文献,搜索用时 0 毫秒
1.
Abstract: We examined the effects of the benzodiazepine inverse agonist FG 7142 on dopamine metabolism in the core and shell subdivisions of the nucleus accumbens. FG 7142 (15 mg/kg i.p.) or vehicle was administered to adult male rats 30 min before they were killed. Selected brain regions, including samples from the whole nucleus accumbens as well as core and shell subdivisions, were collected and assayed for tissue concentrations of dopamine and its major metabolite, 3,4-dihydroxyphenylacetic acid. Consistent with previous reports, FG 7142 administration increased dopamine utilization in the medial prefrontal cortex but not the whole nucleus accumbens. Examination of subdivisions revealed that FG 7142 produced increased dopamine utilization in the shell subdivision of the nucleus accumbens. No effect of FG 7142 on dopamine utilization in the core region of the nucleus accumbens was observed. These data are discussed in terms of in vivo microdialysis studies reporting increased dopamine release in the nucleus accumbens after FG 7142 administration. 相似文献
2.
Mounia Azzi Catalina Betancur Inge Sillaber Rainer Spanagel William Rostène Anne Bérod 《Journal of neurochemistry》1998,71(3):1158-1167
Abstract: The purpose of the present study was to investigate the effects of repeated administration of the neurotensin receptor antagonist, SR 48692, on the activity of the mesocortical and mesolimbic dopaminergic (DA) systems. We showed that daily administration of SR 48692 for 15 days (1 mg/kg i.p.) to Wistar rats increased the expression of tyrosine hydroxylase mRNA and protein in the ventral mesencephalon. Simultaneous in vivo microdialysis in the shell part of the nucleus accumbens (AcbSh) and the medial prefrontal cortex (mPFC) revealed that blockade of neurotensin receptors for 15 days decreased basal extracellular levels of DA (∼50%) and its metabolites in the AcbSh, whereas no modification in DA levels was observed in the mPFC. In animals submitted to a forced swimming stress, which preferentially enhanced extracellular DA levels in the mPFC, treatment with SR 48692 failed to affect the stress-induced increase in DA. Moreover, given that glucocorticoids can modulate the activity of mesencephalic DA neurons, we examined the effect of the same SR 48692 treatment on corticosterone levels in dialysates from the AcbSh. We found that repeated SR 48692 did not affect the basal levels of free corticosterone, but significantly reduced the increase induced by forced swimming stress. The present results demonstrate that repeated treatment with SR 48692 modulates selectively the DA mesolimbic system when compared with the mesocortical pathway. These findings suggest that long-term treatment with selective neurotensin receptor antagonists could have potential clinical utility in the treatment of neuropsychiatric disorders associated with hyperactivity of the mesolimbic DA systems or the hypothalamic-pituitary-adrenal axis. 相似文献
3.
Abstract: Previously, it was shown that microinfusion of the GABAA antagonist picrotoxin into the anterior ventral tegmental area (VTA) is reinforcing. It was hypothesized that this reinforcing effect of picrotoxin in the anterior VTA is mediated, at least in part, by the activation of the mesoaccumbens dopamine (DA) system. The objective of the present study was to determine if blockade of GABAA receptors in the anterior VTA can increase extracellular levels of DA in the nucleus accumbens (ACB), using an in vivo microdialysis technique in freely moving rats. Concentrations of picrotoxin (40, 80, and 160 µ M ) that had previously been shown to produce a reinforcing effect increased the extracellular levels of DA and its major metabolites in the ACB. The increased extracellular DA levels induced by intra-VTA injection of picrotoxin was markedly attenuated by coadministration with the GABAA agonist muscimol, whereas intra-VTA injection of muscimol alone did not have an apparent effect on extracellular DA levels in the ACB. Microinjection of another GABAA antagonist, bicuculline, into the anterior VTA also increased the extracellular release of DA in the ACB. These results suggest that DA neurons projecting from the anterior VTA to the ACB are tonically inhibited by GABA through its actions at the GABAA receptors. 相似文献
4.
Leslie L. Devaud Elizabeth B. Hollingsworth Barrett R. Cooper 《Journal of neurochemistry》1992,59(4):1459-1466
Systemic administration of ritanserin elicited rapid changes in dopamine (DA) and serotonin (5-HT) levels in both dialysate and neuronal tissue extracts. These effects occurred in both a site-selective and a dose-related manner. Increases in extracellular levels of DA and 5-HT in the nucleus accumbens were maximal at 120-140 min after treatment. A dose of 0.63 mg/kg of ritanserin elicited larger and more prolonged increases in extracellular DA and 5-HT levels than did the 0.3 mg/kg dose. By contrast, 0.63 mg/kg of ritanserin elicited no changes in either DA or 5-HT levels with dialysate collected from the striatum. Ritanserin also induced dose-related decreases in tissue levels of DA and 5-HT from the nucleus accumbens. The site specificity of action was again noted in that there were no dose-dependent decreases in tissue levels of DA or 5-HT measured from the striatum. Ritanserin exerted little effect on metabolite levels from either dialysate or tissue extracts. Taken together, these findings show that selective 5-HT2 receptor antagonism modulates DA and 5-HT neurotransmission in a specific manner. These actions appear to involve increased release of DA and 5-HT rather than significant changes in metabolism. These findings add further weight to the importance of 5-HT2 receptor interactions as an important component of antipsychotic activity. 相似文献
5.
Eleonora Calcagno Mirjana Carli Marta Baviera Roberto W. Invernizzi 《Journal of neurochemistry》2009,108(2):521-532
Blockade of NMDA receptors by intracortical infusion of 3-( R )-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) increases glutamate (GLU) and serotonin (5-HT) release in the medial prefrontal cortex and impairs attentional performance in the 5-choice serial reaction time task. These effects are prevented by the 5-HT2A receptor antagonist, ( R )-(+)-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidine methanol (M100907). We explored the roles of endogenous 5-HT and 5-HT1A and 5-HT2C receptors in the mechanisms by which M100907 suppresses CPP-induced release of cortical GLU and 5-HT using in vivo microdialysis. CPP raised extracellular GLU and 5-HT by about 250% and 170% respectively. The 5-HT synthesis inhibitor, p -chlorophenylalanine (300 mg/kg), prevented M100907 suppressing CPP-induced GLU release. The effect of M100907 on these rises of GLU and 5-HT and attentional performance deficit was mimicked by the 5-HT2C receptor agonist, ( S )-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine fumarate, (Ro60-0175, 30 μg/kg) while intra-mPFC (SB242084, 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline, 0.1 μM), a 5-HT2C receptor antagonist, prevented the effect of M100907 on extracellular GLU. The 5-HT1A receptor antagonist, N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridinyl)cyclohexane carboxenide trihydrochloride (100 μM) abolished the effect of M100907 on the CPP-induced 5-HT release. The data show that blockade of 5-HT2A receptors is not sufficient to suppress the CPP-induced rise of extracellular GLU and 5-HT and suggest that M100907 suppresses GLU release induced by CPP by enhancing the action of endogenous 5-HT on 5-HT2C receptors. 相似文献
6.
This study investigates, using in vivo microdialysis, the role of serotonin2A (5-HT2A) and 5-HT(2B/2C) receptors in the effect of dorsal raphe nucleus (DRN) electrical stimulation on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) extracellular levels monitored in the nucleus accumbens (NAC) and the striatum of halothane-anesthetized rats. Following DRN stimulation (300 microA, 1 ms, 20 Hz, 15 min) DA release was enhanced in the NAC and reduced in the striatum. The 5-HT2A antagonist SR 46349B (0.5 mg/kg) and the mixed 5-HT(2A/2B/2C) antagonist ritanserin (0.63 mg/kg) significantly reduced the effect of DRN stimulation on DA release in the NAC but not in the striatum. DA responses to DRN stimulation were not affected by the 5-HT(2B/2C) antagonist SB 206553 (5 mg/kg) in either region. None of these compounds was able to modify the enhancement of DOPAC and 5-HIAA outflow induced by DRN stimulation in either the NAC or the striatum. Finally, in both brain regions basal DA release was significantly increased only by SB 206553. These results indicate that 5-HT2A but not 5-HT(2B/2C) receptors participate in the facilitatory control exerted by endogenous 5-HT on accumbal DA release. Conversely, 5-HT(2B/2C) receptors tonically inhibit basal DA release in both brain regions. 相似文献