首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
MOTIVATION: High-throughput technologies have facilitated the acquisition of large genomics and proteomics datasets. However, these data provide snapshots of cellular behavior, rather than help us reveal causal relations. Here, we propose how these technologies can be utilized to infer the topology and strengths of connections among genes, proteins and metabolites by monitoring time-dependent responses of cellular networks to experimental interventions. RESULTS: We demonstrate that all connections leading to a given network node, e.g. to a particular gene, can be deduced from responses to perturbations none of which directly influences that node, e.g. using strains with knock-outs to other genes. To infer all interactions from stationary data, each node should be perturbed separately or in combination with other nodes. Monitoring time series provides richer information and does not require perturbations to all nodes. Overall, the methods we propose are capable of deducing and quantifying functional interactions within and across cellular gene, signaling and metabolic networks. SUPPLEMENTARY INFORMATION: Supplementary material is available at http://www.dbi.tju.edu/bioinformatics2004.pdf  相似文献   

3.

Background

Modern approaches to treating genetic disorders, cancers and even epidemics rely on a detailed understanding of the underlying gene signaling network. Previous work has used time series microarray data to infer gene signaling networks given a large number of accurate time series samples. Microarray data available for many biological experiments is limited to a small number of arrays with little or no time series guarantees. When several samples are averaged to examine differences in mean value between a diseased and normal state, information from individual samples that could indicate a gene relationship can be lost.

Results

Asynchronous Inference of Regulatory Networks (AIRnet) provides gene signaling network inference using more practical assumptions about the microarray data. By learning correlation patterns for the changes in microarray values from all pairs of samples, accurate network reconstructions can be performed with data that is normally available in microarray experiments.

Conclusions

By focussing on the changes between microarray samples, instead of absolute values, increased information can be gleaned from expression data.
  相似文献   

4.
5.
Inferring gene regulatory networks from multiple microarray datasets   总被引:1,自引:0,他引:1  
MOTIVATION: Microarray gene expression data has increasingly become the common data source that can provide insights into biological processes at a system-wide level. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to a large number of genes, which makes the problem of inferring gene regulatory network an ill-posed one. On the other hand, gene expression data generated by different groups worldwide are increasingly accumulated on many species and can be accessed from public databases or individual websites, although each experiment has only a limited number of time-points. RESULTS: This paper proposes a novel method to combine multiple time-course microarray datasets from different conditions for inferring gene regulatory networks. The proposed method is called GNR (Gene Network Reconstruction tool) which is based on linear programming and a decomposition procedure. The method theoretically ensures the derivation of the most consistent network structure with respect to all of the datasets, thereby not only significantly alleviating the problem of data scarcity but also remarkably improving the prediction reliability. We tested GNR using both simulated data and experimental data in yeast and Arabidopsis. The result demonstrates the effectiveness of GNR in terms of predicting new gene regulatory relationship in yeast and Arabidopsis. AVAILABILITY: The software is available from http://zhangorup.aporc.org/bioinfo/grninfer/, http://digbio.missouri.edu/grninfer/ and http://intelligent.eic.osaka-sandai.ac.jp or upon request from the authors.  相似文献   

6.
MOTIVATION: Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this article we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. RESULTS: We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our method first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation-inhibition networks to match the discretized data. Finally, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

7.

Background

Proteases play an essential part in a variety of biological processes. Besides their importance under healthy conditions they are also known to have a crucial role in complex diseases like cancer. In recent years, it has been shown that not only the fragments produced by proteases but also their dynamics, especially ex vivo, can serve as biomarkers. But so far, only a few approaches were taken to explicitly model the dynamics of proteolysis in the context of mass spectrometry.

Results

We introduce a new concept to model proteolytic processes, the degradation graph. The degradation graph is an extension of the cleavage graph, a data structure to reconstruct and visualize the proteolytic process. In contrast to previous approaches we extended the model to incorporate endoproteolytic processes and present a method to construct a degradation graph from mass spectrometry time series data. Based on a degradation graph and the intensities extracted from the mass spectra it is possible to estimate reaction rates of the underlying processes. We further suggest a score to rate different degradation graphs in their ability to explain the observed data. This score is used in an iterative heuristic to improve the structure of the initially constructed degradation graph.

Conclusion

We show that the proposed method is able to recover all degraded and generated peptides, the underlying reactions, and the reaction rates of proteolytic processes based on mass spectrometry time series data. We use simulated and real data to demonstrate that a given process can be reconstructed even in the presence of extensive noise, isobaric signals and false identifications. While the model is currently only validated on peptide data it is also applicable to proteins, as long as the necessary time series data can be produced.  相似文献   

8.
In the decade since their invention, spotted microarrays have been undergoing technical advances that have increased the utility, scope and precision of their ability to measure gene expression. At the same time, more researchers are taking advantage of the fundamentally quantitative nature of these tools with refined experimental designs and sophisticated statistical analyses. These new approaches utilise the power of microarrays to estimate differences in gene expression levels, rather than just categorising genes as up- or down-regulated, and allow the comparison of expression data across multiple samples. In this review, some of the technical aspects of spotted microarrays that can affect statistical inference are highlighted, and a discussion is provided of how several methods for estimating gene expression level across multiple samples deal with these challenges. The focus is on a Bayesian analysis method, BAGEL, which is easy to implement and produces easily interpreted results.  相似文献   

9.

Background  

Microarrays have become extremely useful for analysing genetic phenomena, but establishing a relation between microarray analysis results (typically a list of genes) and their biological significance is often difficult. Currently, the standard approach is to map a posteriori the results onto gene networks in order to elucidate the functions perturbed at the level of pathways. However, integrating a priori knowledge of the gene networks could help in the statistical analysis of gene expression data and in their biological interpretation.  相似文献   

10.
Kim S  Imoto S  Miyano S 《Bio Systems》2004,75(1-3):57-65
We propose a dynamic Bayesian network and nonparametric regression model for constructing a gene network from time series microarray gene expression data. The proposed method can overcome a shortcoming of the Bayesian network model in the sense of the construction of cyclic regulations. The proposed method can analyze the microarray data as a continuous data and can capture even nonlinear relations among genes. It can be expected that this model will give a deeper insight into complicated biological systems. We also derive a new criterion for evaluating an estimated network from Bayes approach. We conduct Monte Carlo experiments to examine the effectiveness of the proposed method. We also demonstrate the proposed method through the analysis of the Saccharomyces cerevisiae gene expression data.  相似文献   

11.
Inferring gene networks from gene expression data is an important step in understanding the molecular machinery of life. Three methods for establishing and quantifying causal relationships between genes based on steady-state measurements in single-gene perturbation experiments have recently been proposed: the regulatory strength method, the local regulatory strength method, and Gardner's method. The theoretical basis of these methods is presented here in a thorough and consistent fashion. In principle, for the same data set all three methods would generate identical networks, but they would quantify the strengths of connections in different ways. The regulatory strength method is shown here to be topology-dependent. It adopts the format of the data collected in gene expression microarray experiments and therefore can be immediately used with this technology. The regulatory strengths obtained by this method can also be used to compute local regulatory strengths. In contrast, Gardner's method requires both measurements of mRNA concentrations and measurements of the applied rate perturbations, which is not usually part of a standard microarray experimental protocol. The results generated by Gardner's method and by the two regulatory strengths methods differ only by scaling constants, but Gardner's method requires more measurements. On the other hand, the explicit use of rate perturbations in Gardner's approach allows one to address new questions with this method, like what perturbations caused given responses of the system. Results of the application of the three techniques to real experimental data are presented and discussed. The comparative analysis presented in this paper can be helpful for identifying an appropriate technique for inferring genetic networks and for interpreting the results of its application to experimental data.  相似文献   

12.
BNArray is a systemized tool developed in R. It facilitates the construction of gene regulatory networks from DNA microarray data by using Bayesian network. Significant sub-modules of regulatory networks with high confidence are reconstructed by using our extended sub-network mining algorithm of directed graphs. BNArray can handle microarray datasets with missing data. To evaluate the statistical features of generated Bayesian networks, re-sampling procedures are utilized to yield collections of candidate 1st-order network sets for mining dense coherent sub-networks. AVAILABILITY: The R package and the supplementary documentation are available at http://www.cls.zju.edu.cn/binfo/BNArray/.  相似文献   

13.
14.
15.
基于随机森林的胃癌微阵列数据基因通路分析   总被引:1,自引:0,他引:1  
将研究重点从单个基因转移到基因信号通路,结合随机森林与信号通路分析了一组胃癌微阵列数据。通过研究基因在通路中的情况以及通路中的基因对胃癌肠型、弥漫型和正常组织样本的分类能力,扩展了随机森林在生物学中的应用,为胃癌的研究提供了新的思路。  相似文献   

16.
A random forest method has been selected to perform both gene selection and classification of the microarray data. In this embedded method, the selection of smallest possible sets of genes with lowest error rates is the key factor in achieving highest classification accuracy. Hence, improved gene selection method using random forest has been proposed to obtain the smallest subset of genes as well as biggest subset of genes prior to classification. The option for biggest subset selection is done to assist researchers who intend to use the informative genes for further research. Enhanced random forest gene selection has performed better in terms of selecting the smallest subset as well as biggest subset of informative genes with lowest out of bag error rates through gene selection. Furthermore, the classification performed on the selected subset of genes using random forest has lead to lower prediction error rates compared to existing method and other similar available methods.  相似文献   

17.
18.
Artificial biochemical networks (ABNs) are a class of computational dynamical system whose architectures are motivated by the organisation of genetic and metabolic networks in biological cells. Using evolutionary algorithms to search for networks with diagnostic potential, we demonstrate how ABNs can be used to carry out classification when stimulated with time series data collected from human subjects with and without Parkinson's disease. Artificial metabolic networks, composed of coupled discrete maps, offer the best recognition of Parkinsonian behaviour, achieving accuracies in the region of 90%. This is comparable to the diagnostic accuracies found in clinical diagnosis, and is significantly higher than those found in primary and non-expert secondary care. We also illustrate how an evolved classifier is able to recognise diverse features of Parkinsonian behaviour and, using perturbation analysis, show that the evolved classifiers have interesting computational behaviours.  相似文献   

19.
Recently a state-space model with time delays for inferring gene regulatory networks was proposed. It was assumed that each regulation between two internal state variables had multiple time delays. This assumption caused underestimation of the model with many current gene expression datasets. In biological reality, one regulatory relationship may have just a single time delay, and not multiple time delays. This study employs Boolean variables to capture the existence of the time-delayed regulatory relationships in gene regulatory networks in terms of the state-space model. As the solution space of time delayed relationships is too large for an exhaustive search, a genetic algorithm (GA) is proposed to determine the optimal Boolean variables (the optimal time-delayed regulatory relationships). Coupled with the proposed GA, Bayesian information criterion (BIC) and probabilistic principle component analysis (PPCA) are employed to infer gene regulatory networks with time delays. Computational experiments are performed on two real gene expression datasets. The results show that the GA is effective at finding time-delayed regulatory relationships. Moreover, the inferred gene regulatory networks with time delays from the datasets improve the prediction accuracy and possess more of the expected properties of a real network, compared to a gene regulatory network without time delays.  相似文献   

20.
For more than 30 years, expression divergence has been considered as a major reason for retaining duplicated genes in a genome, but how often and how fast duplicate genes diverge in expression has not been studied at the genomic level. Using yeast microarray data, we show that expression divergence between duplicate genes is significantly correlated with their synonymous divergence (KS) and also with their nonsynonymous divergence (KA) if KA ≤ 0.3. Thus, expression divergence increases with evolutionary time, and KA is initially coupled with expression divergence. More interestingly, a large proportion of duplicate genes have diverged quickly in expression and the vast majority of gene pairs eventually become divergent in expression. Indeed, more than 40% of gene pairs show expression divergence even when KS is ≤ 0.10, and this proportion becomes >80% for KS > 1.5. Only a small fraction of ancient gene pairs do not show expression divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号