首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Many lines of evidence indicate that vanadium inorganic salts possess insulin-mimetic and insulinotropic properties. However, they are poorly absorbed, so high oral doses are required to achieve effective plasma concentrations with possible undesirable toxic side-effects ensuing. Various organically-chelated vanadium compounds have been synthesized that are more potent than inorganic vanadium salts in their insulin-like effects due to their greater bioavailability. Unfortunately, little is known about the possible insulin secretagogue action of organic vanadyl coordination compounds. Hence, we investigated the effect of [VO(metformin)2]H2O, [VO(salicylidene-ethylenedimmine)2] and [VO(pyrrolidine-N-dithiocarbamate)2](VODTC) on insulin release from isolated rat pancreatic islets, and compared it to that of vanadyl sulfate (VOSO4). Of the three coordination compounds, only VODTC was found to exert insulin secretagogue action. VODTC, within concentrations ranging from 0.1 to 1.0 mM, enhanced both basal and glucose (11 mM)-stimulated insulin release. The effect involves calcium channels, since it was not appreciable in Ca2+-free medium. The stimulating action of VODTC required the presence of the whole metal-chelator complex inasmuch as the chelator DTC alone was ineffective. VOSO4 was unable to bring about any significant rise in insulin release from isolated islets. Taken together, our findings indicate that VODTC may be considered a potential elective pharmaceutical tool in the therapy of diabetes, especially of type 2, through its concomitant stimulatory effect on insulin secretion and insulin-mimetic action.  相似文献   

2.
Vanadium K-edge X-ray absorption spectroscopy (XAS) has been used to track the uptake and fate of VO(2+) ion in blood cells from Ascidia ceratodes, following exposure to dithiothreitol (DTT) or to DTT plus VO(2+). The full range of endogenous vanadium was queried by fitting the XAS of blood cells with the XAS spectra of model vanadium complexes. In cells exposed only to DTT, approximately 0.4% of a new V(III) species was found in a site similar to Na[V(edta)(H(2)O)]. With exposure to DTT and VO(2+), average intracellular [VO(aq)](2+) increased from 3% to 5%, and 6% of a new complexed form of vanadyl ion appeared evidencing a ligand array similar to [VO(edta)](2-). At the same time, the relative ratio of blood cell [V(H(2)O)(6)](3+) increased at the expense of [V(H(2)O)(5)(SO(4))](+) in a manner consistent with a significant increase in endogenous acidity. In new UV/Visible experiments, VO(2+) could be reduced to 7-coordinate [V(nta)(H(2)O)(3)] or [V(nta)(ida)](2-) with cysteine methyl ester in pH 6.5 solution. Ascorbate reduced [VO(edta)](2-) to 7-coordinate [V(edta)(H(2)O)](-), while [VO(trdta)](2-) was unreactive. These results corroborate the finding that the reductive EMF of VO(2+) is increased by the availability of a 7-coordinate V(III) product. Finally, a new and complete hypothesis is proposed for an ascidian vanadate reductase. The structure of the enzyme active site, the vanadate-vanadyl-vanadic reduction mechanism, the cellular locale, and elements of the regulatory machinery governing the biological reduction of vanadate and vanadyl ion by ascidians are all predicted. Together these constitute the new field of vanadium redox enzymology.  相似文献   

3.
The effect of vanadium oxides on living systems may involve the in vivo conversion of vanadate and vanadyl ions. The addition of 5 mM orthovanadate (VO4(3-), V(V)), a known inhibitor of the (Na,K)-ATPase, to yeast cells stopped growth. In contrast, the addition of 5 mM vanadyl (VO2+, V(IV) stimulated growth. Orthovanadate addition to whole cells is known to stimulate various cellular processes. In yeast, both ions inhibited the plasma membrane Mg2+ ATPase and were transported into the cell as demonstrated with [48V]VO4(3-) and VO2+. ESR spectroscopy has been used to measure the cell-associated paramagnetic vandyl ion, while 51V NMR has detected cell-associated diamagnetic vanadium (e.g. V(V)). Cells were exposed to both toxic (5 mM) and nontoxic (1 mM) concentrations of vanadate in the culture medium. ESR showed that under both conditions, vanadate became cell associated and was converted to vanadyl which then accumulated in the cell culture medium. 51V NMR studies showed the accumulation of new cell-associated vanadium resonances identified as dimeric vanadate and decavanadate in cells exposed to toxic amounts of medium vanadate (5 mM). These vanadate compounds did not accumulate in cells exposed to 1 mM vanadate. These studies confirm that the inhibitory form of vanadium usually observed in in vitro experiments is vanadate, in one or more of its hydrated forms. These data also support the hypothesis that the stimulatory form of vanadium usually observed in whole cell experiments is the vanadyl ion or one or more of its liganded derivatives.  相似文献   

4.
Aqueous vanadate and aqueous tungstate have been known to mimic all or most of the actions of insulin in intact cell systems with respect to normalization of the blood glucose level. By carrying out oral administration in vivo experiments on the blood glucose level of streptozotocin (STZ)-induced diabetes (STZ mice), the insulin-mimetic (IM) effects of metal-oxide clusters of all-inorganic composition were examined using many types of polyoxometalates (POM) with and without vanadium substitution. Several homo-POM and vanadium-substituted POM showed hypoglycemic effects. The observed hypoglycemic effects indicated that POM with the Dawson structure [[alpha-P(2)W(18)O(62)](6-) (W-2), [alpha-P(2)W(17)V(V)O(62)](7-) (V-19) and [alpha-1,2,3-P(2)W(15)V(V)(3)O(62)](9-) (V-04)] are more effective than those with the Keggin structure [[alpha-PW(12)O(40)](3-) (W-1), [alpha-PW(11)V(V)O(40)](4-) (V-01), [alpha-1,2-PW(10)V(V)(2)O(40)](5-) (V-02), [alpha-1,2,3-PW(9)V(V)(3)O(40)](6-) (V-03) and [alpha-1,4,9-PW(9)V(V)(3)O(40)](6-) (V-13)]. The vanadate cluster [V(10)O(28)](6-) (V-15) also showed a hypoglycemic effect. (31)P and (51)V NMR measurements showed that the Dawson POM (W-2, V-04 and V-19) are stable in aqueous solution under the conditions used. The effect of all POM on the body weight of STZ mice was also examined. The decrease in body weight after administration of W-2 was much less than for V-19, V-04 and V-15. This suggests that not only monomeric tungstate and vanadate, but also the structure factors of tungstate and vanadate clusters, can play a significant role in their biological action.  相似文献   

5.
There is increasing evidence for the involvement of plasma membrane microdomains in insulin receptor function. Moreover, disruption of these structures, which are typically enriched in sphingomyelin and cholesterol, results in insulin resistance. Treatment strategies for insulin resistance include the use of vanadium (V) compounds which have been shown in animal models to enhance insulin responsiveness. One possible mechanism for insulin-enhancing effects might involve direct effects of V compounds on membrane lipid organization. These changes in lipid organization promote the partitioning of insulin receptors and other receptors into membrane microdomains where receptors are optimally functional. To explore this possibility, we have used several strategies involving V complexes such as [VO(2)(dipic)](-) (pyridin-2,6-dicarboxylatodioxovanadium(V)), decavanadate (V(10)O(28)(6-), V(10)), BMOV (bis(maltolato)oxovanadium(IV)), and [VO(saltris)](2) (2-salicylideniminato-2-(hydroxymethyl)-1,3-dihydroxypropane-oxovanadium(V)). Our strategies include an evaluation of interactions between V-containing compounds and model lipid systems, an evaluation of the effects of V compounds on lipid fluidity in erythrocyte membranes, and studies of the effects of V-containing compounds on signaling events initiated by receptors known to use membrane microdomains as signaling platforms.  相似文献   

6.
Vanadium compounds show interesting biological and pharmacological properties. Some of them display insulin-mimetic effects and others produce anti-tumor actions. The bioactivity of vanadium is present in inorganic species like the vanadyl(IV) cation or vanadate(V) anion. Nevertheless, the development of new vanadium derivatives with organic ligands which improve the beneficial actions and decrease the toxic effects is of great interest. On the other hand, the mechanisms involved in vanadium bioactivity are still poorly understood. A new vanadium complex of the vanadyl(IV) cation with the disaccharide trehalose (TreVO), Na(6)[VO(Tre)(2)].4H(2)O, here reported, shows interesting insulin-mimetic properties in two osteoblast cell lines, a normal one (MC3T3E1) and a tumoral one (UMR106). The complex affected the proliferation of both cell lines in a different manner. On tumoral cells, TreVO caused a weak stimulation of growth at 5 microM but it inhibited cell proliferation in a dose-response manner between 50 and 100 microM. TreVO significantly inhibited UMR106 differentiation (15-25% of basal) in the range 5-100 microM. On normal osteoblasts, TreVO behaved as a mitogen at 5-25 microM. Different inhibitors of the MAPK pathway blocked this effect. At higher concentrations (75-100 microM), the complex was a weak inhibitor of the MC3T3E1 proliferation. Besides, TreVO enhanced glucose consumption by a mechanism independent of the PI3-kinase activation. In both cell lines, TreVO stimulated the ERK phosphorylation in a dose- and time-dependent manner. Different inhibitors (PD98059, wortmannin, vitamins C and E) partially decreased this effect, which was totally inhibited by their combination. These results suggest that TreVO could be a potential candidate for therapeutic treatments.  相似文献   

7.
We have investigated the interaction of bis(acetylacetonato)oxovanadium(IV) (VO(acac)(2)) with bovine serum albumin (BSA) by EPR and angle-selected electron nuclear double resonance, correlating results with assays of glucose uptake by 3T3-L1 adipocytes. EPR spectra of VO(acac)(2) showed no broadening in the presence of BSA; however, electron nuclear double resonance titrations of VO(acac)(2) in the presence of BSA were indicative of adduct formation of VO(acac)(2) with albumin of 1:1 stoichiometry. The influence of VO(acac)(2) on uptake of 2-deoxy-d-[1-(14)C]glucose by serum-starved 3T3-L1 adipocytes was measured in the presence and absence of BSA. Glucose uptake was stimulated 9-fold in the presence of 0.5 mm VO(acac)(2), 17-fold in the presence of 0.5 mm VO(acac)(2) plus 1 mm BSA, and 22-fold in the presence of 100 nm insulin. BSA had no influence on glucose uptake, on the action of insulin, or on glucose uptake in the presence of VOSO(4). The maximum insulin-mimetic effect of VO(acac)(2) was observed at VO(acac)(2):BSA ratios less than or equal to 1.0. Similar results were obtained also with bis(maltolato)oxovanadium(IV). These results suggest that the enhanced insulin-mimetic action of organic chelates of VO(2+) may be dependent on adduct formation with BSA and possibly other serum transport proteins.  相似文献   

8.
In this work we present the synthesis and structural and spectroscopic characterization of Cu(II), Co(II) and Zn(II) coordination compounds with the antibiotic metronidazole ([double bond]emni). Coordination to metal ions is through its imidazolic nitrogen, while the hydroxyethyl and nitro groups act as supramolecular synthons. [Co(emni)(2)Br(2)], and [Zn(emni)(2)X(2)] (X(-)=Cl, Br) stabilize zig-zag chains, and a 2D supramolecular structure is formed by inter-chain contacts through inter-molecular hydrogen-bonding. Pleated sheet or layers are formed by [Co(emni)(2)Cl(2)] and [Cu(emni)(2)Cl(H(2)O)](2)Cl(2), respectively. The dinuclear Cu(II) compound [Cu(emni)mu(O(2)CMe)(2)](2) gives a one-dimensional zig-zag arrangement. The contribution of metal ions in metronidazole coordination compounds is shown in the stabilization of the different aggregate structures.  相似文献   

9.
As a contribution to the development of novel vanadyl complexes with potential insulin-mimetic activity, three new oxovanadium(IV) complexes with the formula VO(L)(2), where L are 3-amino-quinoxaline-2-carbonitrile N(1),N(4)-dioxide derivatives, have been synthesized. Complexes have been characterized by elemental and thermal analyses, fast atom bombardment mass spectroscopy (FAB-MS), conductivity measurements and electronic, Fourier transform infrared (FTIR) and electron paramagnetic resonance (EPR) spectroscopies. The in vitro insulin-mimetic activity of the vanadyl complexes has been estimated by lipolysis inhibition tests, in which the inhibition of the release of free fatty acid from isolated rat adipocytes treated with epinephrine was determined. All the complexes showed inhibitory effects on free fatty acid release. [V(IV)O(3-amino-6(7)-bromoquinoxaline-2-carbonitrile N(1),N(4)-dioxide)(2)] exhibited higher in vitro insulin-mimetic activity than the very active bis(6-methylpicolinato)oxovanadium(IV), VO(6mpa)(2). This new vanadyl complex is expected to exhibit a higher blood glucose lowering activity than VO(6mpa)(2) in diabetic animals.  相似文献   

10.
The use of protonated N-heterocyclic compound, i.e. 2,2′-bipyridinium cation, [bpyH+], enabled to obtain the new nitrilotriacetate oxidovanadium(IV) salt of the stoichiometry [bpyH][VO(nta)(H2O)]H2O. The X-ray measurements have revealed that the compound comprises the discrete mononuclear [VO(nta)(H2O)]? coordination ion that can be rarely found among other known compounds containing nitrilotriacetate oxidovanadium(IV) moieties. The antitumor activity of [bpyH][VO(nta)(H2O)]H2O and its phenanthroline analogue, [phenH][VO(nta)(H2O)](H2O)0.5, towards human osteosarcoma cell lines (MG-63 and HOS) has been assessed (the LDH and BrdU tests) and referred to cis-Pt(NH3)2Cl2 (used as a positive control). The compounds exert a stronger cytotoxic effect on MG-63 and HOS cells than in untransformed human osteoblast cell line. Thus, the [VO(nta)(H2O)]? containing coordination compounds can be considered as possible antitumor agents in the osteosarcoma model of bone-related cells in culture.  相似文献   

11.
Bis(picolinato)oxovanadium(IV) [VO(pic)2] is one of the most potent insulin-mimetic vanadium complexes. To probe coordination structural changes of this complex in vivo and provide insights into the origin of its high potency, an electron spin-echo envelope modulation (ESEEM) study was performed on organs (kidney, liver and bone) of VO(pic)2- and VOSO4-treated rats. Kidney and liver samples from both types of rats exhibited a 14N ESEEM signal that could be attributed to equatorially coordinating amine nitrogen. The relative intensity of the amine signal was larger for the organs of the rat treated with the less potent VOSO4, suggesting that this amine coordination inhibits the insulin-mimetic activity. The spectra of kidney and liver from the VO(pic)2-treated rat contained a weak signal due to the picolinate imine nitrogen. This suggests that some picolinato species (including both the bispicolinato and a partially decomposed monopicolinato species) still exist in the organs as a minor species, where the proportions of the picolinato species to the total amount of the EPR-detectable VIVO species are estimated as 8-16% in the kidney and 12-24% in the liver. The picolinate ligand presumably serves to prevent VO2+ from being converted into the inactive amine-coordinated species. Bone samples from both types of rats exhibited an ESEEM signal due to 31P nuclei. The VO2+ in bone is therefore most likely incorporated into the hydroxyapatite Ca10(PO4)6(OH)2 matrix, which is consistent with the hypothesis that the bone-accumulated VO2+ is gradually released and transported to other organs as is Ca2+. No 14N signals were observed, even in the bone samples of the VO(pic)2-treated rats, indicating that vanadium uptake by bone requires complete decomposition of the complex.  相似文献   

12.
Fits to the vanadium K-edge X-ray absorption spectra (XAS) of five whole blood cell samples from the tunicate Phallusia nigra revealed unprecedented forms of intracellular vanadium. Endogenous vanadium was divided between the V(III) ion (74.2+/-5.1% of total V) and the vanadyl ion [V(IV)=O](2+) (25.2+/-5.4% of total V). The V(III) fraction included both [V(H(2)O)(6)](3+) (36.7+/-5.5%) modeled as VCl(3) in 1 M HCl, and three previously unprecedented chelated V(III) forms (37.5+/-4.6%). Two of these could be represented by the model ligand environments V(acetylacetonate)(3) (17.9+/-3.2%) and K(3)V(catecholate)(3) (13.1+/-4.7%), implying DOPA-like complexation. The third chelated form was represented by the 7-coordinate N(2)O(5) complex Na[V(edta)(H(2)O)] (8.0+/-1.8%). This coordination array, suggestive of a novel mononuclear V(III) protein site, contributed only to fits to samples 1, 2, 3 and 5, which were prepared in the presence of DTT. Endogenous V(IV) (25.2+/-5.4%) was principally modeled as VOCl(2) in 1 M HCl. EPR spectra (averages: A(parallel)=(1.842+/-0.006)x10(-2) cm(-1); A( perpendicular)=(0.718+/-0.007)x10(-2) cm(-1); g(parallel)=1.936+/-0.002; g( perpendicular)=1.990+/-0.001) confirmed the predominance of the aquated vanadyl ion. Blood cell sample five uniquely required the XAS spectrum of VOSO(4) in 0.1 M H(2)SO(4) solution (13.0%) and of [OV(V)(pivalate)(3)] (3.1%) to successfully fit the XAS pre-edge energy region. This endogenous V(V) signal is also unprecedented. These results are compared with those of analogous fits to the blood cells of Ascidia ceratodes and may support assignment of P. nigra to a different genus.  相似文献   

13.
In recent years the anticancer properties of vanadium compounds have been noticed, but the underlying mechanisms are not well understood. In the present work, we found that vanadyl bisacetylacetonate ([VO(acac)(2)]) blocked cell cycle progression permanently at G1 phase in a dose- and time-dependent manner in HepG2 cells. This was further evidenced by the growth regulatory signals during the G1 stage. After the treatment with [VO(acac)(2)], the level of phosphorylation of retinoblastoma tumor suppressor protein (pRb) and the expressions of cyclin D1, cyclin E and cyclin A were reduced, while the expression of a cyclin-dependent kinase inhibitor p21 was increased dose-dependently. In the meantime, neither O(2)(*-) nor H(2)O(2) level was observed to increase. Interestingly, the levels of phosphorylated extracellular signal-regulated protein kinase (ERK) and Akt were highly activated. After 1-h pretreatment with a lower concentration of MEK inhibitor U0126, the level of phosphorylated pRb was restored, indicating a release of cell cycle arrest. Taken together, we suggested that [VO(acac)(2)]-induced proliferation inhibition was caused by G1/S cell cycle arrest, which resulted from the decreased level of phosphorylated pRb in its active hypophosphorylated form via a highly activated ERK signal in HepG2 cells. The results presented here provided new insight into the development of vanadium compounds as potential anticancer agents.  相似文献   

14.
Vanadyl sulfate (VOSO(4)) was given orally to 16 subjects with type 2 diabetes mellitus for 6 weeks at a dose of 25, 50, or 100 mg vanadium (V) daily [Goldfine et al., Metabolism 49 (2000) 1-12]. Elemental V was determined by graphite furnace atomic absorption spectrometry (GFAAS). There was no correlation of V in serum with clinical response, determined by reduction of mean fasting blood glucose or increased insulin sensitivity during euglycemic clamp. To investigate the effect of administering a coordinated V, plasma glucose levels were determined in streptozotocin (STZ)-induced diabetic rats treated with the salt (VOSO(4)) or the coordinated V compound bis(maltolato)oxovandium(IV) (abbreviated as VO(malto)(2)) administered by intraperitoneal (i.p.) injection. There was no relationship of blood V concentration with plasma glucose levels in the animals treated with VOSO(4), similar to our human diabetic patients. However, with VO(malto)(2) treatment, animals with low plasma glucose tended to have high blood V. To determine if V binding to serum proteins could diminish biologically active serum V, binding of both VOSO(4) and VO(malto)(2) to human serum albumin (HSA), human apoTransferrin (apoHTf) and pig immunoglobulin (IgG) was studied with EPR spectroscopy. Both VOSO(4) and VO(malto)(2) bound to HSA and apoHTf forming different V-protein complexes, while neither V compound bound to the IgG. VOSO(4) and VO(malto)(2) showed differences when levels of plasma glucose and blood V in diabetic rodents were compared, and in the formation of V-protein complexes with abundant serum proteins. These data suggest that binding of V compounds to ligands in blood, such as proteins, may affect the available pool of V for biological effects.  相似文献   

15.
W J Ray  C B Post 《Biochemistry》1990,29(11):2779-2789
The absorbance peak in the near ultraviolet electron-transfer spectrum of the oxyvanadium constellation in the "transition-state-analogue complexes" obtained by treating the dephospho form of phosphoglucomutase with inorganic vanadate in the presence of either glucose 1-phosphate or glucose 6-phosphate, as described in an accompanying paper [Ray, W. J., Jr., Burgner, J. W., II, & Post, C. B. (1990) Biochemistry (second of four papers in this issue)], is centered at a wavelength of 312 nm. The position of this peak amounts to a change in oscillator frequency of about -5000 cm-1 relative to that of tetrahedral VO4(3-). To provide a rationale for this spectral change, the near ultraviolet spectra of the di- and monoanions of inorganic vanadate and a number of derivatives of these anions are compared with that of vanadium (V) in the enzymic complexes, in terms of both what is observed experimentally and what is expected from crystal field theory. Comparisons in water and in largely anhydrous solvents show that water is not an essential element in the coordination sphere of inorganic vanadate or its mono- or diesters and hence that the coordination number of V(V) in such compounds likely is four. These comparisons also show that loss of solvating water from a 4-coordinate vanadate on binding cannot provide a rationale for the spectra of the enzymic complexes. Other comparisons show that neither the binding of metal ions nor protonation nor the binding of vanadate at a site with an unusually high or an unusually low dielectric constant can provide such a rationale. Further comparisons with vanadates known to be pentacoordinate strongly suggest that the coordination number of V(V) in the transition-state-analogue complexes of phosphoglucomutase does not exceed four. In fact, from the standpoint of crystal field theory the marked red shift observed in the electron-transfer absorbance spectrum of the oxyvanadium constellation in these complexes is more reasonably interpreted in terms of a decreased coordination at vanadium (V), viz., in terms of a weakened bonding between vanadium and one or more of its coordinating oxygens. This decreased coordination could be produced by a physical stretching of the vanadate ester linkage. By contrast, the near ultraviolet spectrum of the transition-state-analogue complex that ribonuclease forms with an adduct of uridine and vanadate [Lindquist, R. N., Lynn, J. L., & Lienhard, G. E. (1973) J. Am. Chem. Soc. 95, 8762] is similar to spectra of pentacoordinate model compounds of vanadium(V).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The reaction of [VO(CH3COO)2(phen)] (phen = 1,10-phenanthroline) with the sulfhydryl-containing pseudopeptides (scp), N-(2-mercaptopropionyl)glycine (H3mpg), N-(2-mercaptopropionyl)cysteine (H4m2pc), N-(3-mercaptopropionyl)cysteine (H4m3pc) and the dipeptides glycylglycine (H2glygly) and glycyl-L-alanine (H2glyala), in the presence of triethylamine, results in the formation of the compounds Et3NH[VO(mpg)(phen)] (1), (Et3NH)2[VO(m2pc)] (4), [(Et3NH)2[VO(m3pc) (5), [VO(glygly)(phen)] x 2CH3OH (2 x 2CH3OH) and [VO(glyala)(phen)] x CH3OH (3 x CH3OH). Evidence for the molecular connectivity in 2 x CH3OH was established by X-ray crystallography, showing the vanadium(IV) atom ligated to a tridentate glygly2- ligand at the N(amine), N(peptide) and O(carboxylato) atoms. Combination of the correlation plot of the EPR parameters gz versus Az, together with the additivity relationship supported the prediction of the equatorial donor atom sets of the V(IV)O2+ center at various pH values for the V(IV)O2+-glutathione system considered in this study. Model NMR studies (interaction of vanadium(V) with the scp H3mpg) showed that there is a possibility of vanadium(V) ligation to glutathione.  相似文献   

17.
The Cr(V) complexes, bis(2-ethyl-2-hydroxybutyrato)oxochromate(V) ([OCr(V)(ehba)(2)](-)) and (2,2-bis(hydroxymethyl)-2-(bis(2-hydroxyethyl)amino)ethanolato)oxochromate(V) ([OCr(V)(BT)](2-)), were reacted with a series of deoxyribonucleotide triphosphates. Oxidation of deoxyribose at C4' was observed by measuring the amount of thiobarbituric acid reactive species (TBARS) produced in these reactions. For both compounds, the TBARS obtained with purine nucleotides was between 2.25 and 3.5 times greater than what was observed with pyrimidine nucleotide. This result suggests that the identity of the nucleic acid base can influence the hydrogen atom abstraction at C4'. Overall, the amount of product obtained with [OCr(V)(BT)](2-) was significantly less than what was observed with [OCr(V)(ehba)(2)](-), indicating that these two Cr(V) model complexes may oxidize DNA differently.  相似文献   

18.
The cytotoxicity of certain Cr(III) complexes, such as [Cr(salen)(H(2)O)(2)](+), [Cr(edta)(H(2)O)](-), [Cr(en)(3)](3+), [Cr(ox)(3)](3-), [Cr(pic)(3)], and CrCl(3), which differ in ionic character and ligand environment in human dermal skin fibroblasts, has been studied. After 72 h of exposure to 100 microM doses of chromium(III) complexes, the order in which the complexes had an inhibitory effect on cell viability was [Cr(en)(3)](3+) > [Cr(salen)(H(2)O)(2)](+) > [Cr(ox)(3)](3-) > [Cr(edta)(H(2)O)](-) > [Cr(pic)(3)] > CrCl(3). Based on viability studies it was confirmed that [Cr(en)(3)](3+), a triply charged cation, inhibits cell proliferation, and therefore, it was chosen to carry out further investigations. [Cr(en)(3)](3+), at a dose of 50 microM, was found to bring about surface morphological changes, evidenced by cellular blebbing and spike formation accompanied by nuclear damage. TEM analysis revealed substantial intracellular damage to fibroblasts in terms of the formation of apoptotic bodies and chromatin condensation, thus reflecting cell death. FACS analysis further revealed DNA damage by formation of a sub-G(1) peak with 84.2% DNA as aneuploid DNA and arrest of the G(2) / M phase of the cell cycle. Cellular DNA damage was confirmed by agarose gel electrophoresis with the characteristic appearance of a DNA streak in DNA isolated from [Cr(en)(3)](3+)-treated fibroblasts. The proposed mechanism suggests the plausible role of Cr(V), formed as a result of oxidation of Cr(III) by cellular oxidative enzymes, in the cytotoxic response. Consequently, any Cr(III) complex that is absorbed by cells and can be oxidized to Cr(V) must be considered a potential carcinogen. This has potential implications for the increased use of Cr(III) complexes as dietary supplements and highlights the need to consider the cytotoxicity and genotoxicity of a variety of Cr(III) complexes and to understand the potential hazards of Cr(III) complexes encountered in research laboratories.  相似文献   

19.
Some arsenic compounds were the first antimicrobial agents specifically synthesized for the treatment of infectious diseases such as syphilis and trypanosomiasis. More recently, arsenic trioxide has been shown to be efficient in the treatment of acute promyelocytic leukemia. The exact mechanism of action has not been elucidated yet, but it seems to be related to arsenic binding to vicinal thiol groups of regulatory proteins. Glutathione is the major intracellular thiol and plays important roles in the cellular defense and metabolism. This paper reports on a study of the interactions between arsenic(III) and either cysteine or glutathione in aqueous solution. The behavior observed for the As(III)-glutathione system is very similar to that of As(III)-cysteine. In both cases, the formation of two complexes in aqueous solution was evidenced by NMR and electronic spectroscopies and by potentiometry. The formation constants of the cysteine complexes [As(H(-1)Cys)(3)], log K = 29.84(6), and [As(H(-2)Cys)(OH)(2)](-), log K = 12.01(9), and of the glutathione complexes [As(H(-2)GS)(3)](3-), log K = 32.0(6), and [As(H(-3)GS)(OH)(2)](2-), log K = 10(3) were calculated from potentiometric and spectroscopic data. In both cases, the [As(HL)(3)] species, in which the amine groups are protonated, predominate from acidic to neutral media, and the [As(L)(OH)(2)] species appear in basic medium (the charges were omitted for the sake of simplicity). Spectroscopic data clearly show that the arsenite-binding site in both complexes is the sulfur atom of cysteine. In the [As(L)(OH)(2)] species, the coordination sphere is completed by two hydroxyl groups. In both cases, arsenic probably adopts a trigonal pyramidal geometry. Above pH 10, the formation of [As(OH)(2)O](-) excludes the thiolates from arsenic coordination sites. At physiological pH, almost 80% of the ligand is present as [As(HL)(3)].  相似文献   

20.
As a contribution to the development of novel vanadium complexes with pharmacologically interesting moieties, new dioxovanadium(V) semicarbazone complexes with the formula cis-VO(2)L, where L=5-bromosalicylaldehyde semicarbazone and 2-hydroxynaphtalen-1-carboxaldehyde semicarbazone have been synthesized and characterized by (1)H and (13)C NMR, Raman and FTIR spectroscopies. Results were compared with those previously reported for other three analogous complexes of this series. The five complexes were tested in three different human tumor cell lines for bioactivity as potential anti-tumor agents, showing selective cytotoxicity on TK-10 cell line. Results showed that structural modifications on the semicarbazone moiety could have a significant effect on the anti-tumor activity of the vanadium complexes. In addition, the electrochemical behavior of all the complexes was studied. No apparent correlation could be demonstrated between reduction potentials of the complexes and their anti-tumor activities. The molecular structure of the novel [V(V)O(2)(5-bromosalicylaldehyde semicarbazone)] complex was solved by X-ray diffraction methods. The vanadium atom shows a distorted square pyramidal coordination sphere. The (VO(2))(+) cation is coordinated to a nearly planar (L)(-) anion acting as a tridentate ligand through both oxygen and one nitrogen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号