首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neuropathy associated with diabetes includes well documented impairment of axonal transport, a reduction in axon calibre and a reduced capacity for nerve regeneration. All of those aspects of nerve function rely on the integrity of the axonal cytoskeleton. Alterations in the axonal cytoskeleton in experimental diabetes include an insulin-dependent non-enzymatic glycation of actin that is reflected in increased glycation of platelet actin in the clinical situation. There is a reduced synthesis of mRNA for the isoforms of tubulin that are associated with nerve growth and regeneration and an elevated non-enzymatic glycation of peripheral nerve tubulin in both diabetic patients and diabetic animals. mRNAs for neurofilament proteins are selectively reduced in the diabetic rat and the post-translational modification of at least one of the neurofilament proteins is altered. There is some evidence that altered expression of isoforms of protein kinases may contribute to these changes.  相似文献   

2.
Disruption of axonal transport plays a pivotal role in diabetic neuropathy. A sex-dimorphism exists in the incidence and symptomatology of diabetic neuropathy; however, no studies so far have addressed sex differences in axonal motor proteins expression in early diabetes as well as the possible involvement of neuroactive steroids. Interestingly, recent data point to a role for mitochondria in the sexual dimorphism of neurodegenerative diseases. Mitochondria have a fundamental role in axonal transport by producing the motors’ energy source, ATP. Moreover, neuroactive steroids can also regulate mitochondrial function. Here, we investigated the impact of short-term diabetes in the peripheral nervous system of male and female rats on key motor proteins important for axonal transport, mitochondrial function, and neuroactive steroids levels. We show that short-term diabetes alters mRNA levels and axoplasm protein contents of kinesin family member KIF1A, KIF5B, KIF5A and Myosin Va in male but not in female rats. Similarly, the expression of peroxisome proliferator-activated receptor γ co-activator-1α, a subunit of the respiratory chain complex IV, ATP levels and the key regulators of mitochondrial dynamics were affected in males but not in females. Concomitant analysis of neuroactive steroid levels in sciatic nerve showed an alteration of testosterone, dihydrotestosterone, and allopregnanolone in diabetic males, whereas no changes were observed in female rats. These findings suggest that sex-specific decrease in neuroactive steroid levels in male diabetic animals may cause an alteration in their mitochondrial function that in turn might impact in axonal transport, contributing to the sex difference observed in diabetic neuropathy.  相似文献   

3.
Axonal transport is known to be impaired in peripheral nerve of experimentally diabetic rats. As axonal transport is dependent on the integrity of the neuronal cytoskeleton, we have studied the way in which rat brain and nerve cytoskeletal proteins are altered in experimental diabetes. Rats were made diabetic by injection of streptozotocin (STZ). Up to six weeks later, sciatic nerves, spinal cords, and brains were removed and used to prepare neurofilaments, microtubules, and a crude preparation of cytoskeletal proteins. The extent of nonenzymatic glycation of brain microtubule proteins and peripheral nerve tubulin was assessed by incubation with3H-sodium borohydride followed by separation on two-dimensional polyacrylamide gels and affinity chromatography of the separated proteins. There was no difference in the nonenzymatic glycation of brain microtubule proteins from two-week diabetic and nondiabetic rats. Nor was the assembly of microtubule proteins into microtubules affected by the diabetic state. On the other hand, there was a significant increase in nonenzymatic glycation of sciatic nerve tubulin after 2 weeks of diabetes. We also identified an altered electrophoretic mobility of brain actin from a cytoskeletal protein preparation from brain of 2 week and 6 week diabetic rats. An additional novel polypeptide was demonstrated with a slightly more acidic isoelectric point than actin that could be immunostained with anti-actin antibodies. The same polypeptide could be produced by incubation of purified actin with glucose in vitro, thus identifying it as a product of nonenzymatic glycation. These results are discussed in relation to data from a clinical study of diabetic patients in which we identified increased glycation of platelet actin. STZ-diabetes also led to an increase in the phosphorylation of spinal cord neurofilament proteins in vivo during 6 weeks of diabetes. This hyperphosphorylation along with a reduced activity of a neurofilament-associated protein kinase led to a reduced incorporation of32P into purified neurofilament proteins when they were incubated with32P-ATP in vitro. Our combined data show a number of posttranslation modifications of neuronal cytoskeletal proteins that may contribute to the altered axonal transport and subsequent nerve dysfunction in experimental diabetes.  相似文献   

4.
The effects of the calmodulin inhibitors amitriptyline, desipramine, imipramine, and clomipramine on fast axonal transport, oxidative metabolism, and density of axonal microtubules were measured in bullfrog spinal nerves in vitro. The four drugs tested inhibited the fast orthograde transport of [3H]leucine-labelled proteins and the fast retrograde transport of acetylcholinesterase at a concentration of 0.2 mM. Amitriptyline, desipramine, and imipramine were equipotent inhibitors of transport, and clomipramine was a more potent inhibitor than imipramine. The adenosine triphosphate content of the nerves was reduced by at most 19% by the compounds under study; such a reduction cannot account for the inhibition of fast axonal transport. Desipramine and imipramine had no significant effect on the density of microtubules in unmyelinated axons, whereas amitriptyline only reduced it by 18%; the inhibition of axonal transport by these three drugs can therefore not be explained by microtubule disruption. Clomipramine reduced microtubular density by 40%, and this effect may have contributed to the inhibition of fast axonal transport. The inhibition of fast axonal transport by desipramine, imipramine, and amitriptyline may be related to the inhibition of calmodulin function by these drugs. The similar potency of these three drugs as inhibitors of fast axonal transport goes in parallel with their known similar potency as calmodulin antagonists.  相似文献   

5.
Proteins labeled with [35S]methionine or [3H]leucine were generated in vitro in bullfrog dorsal root ganglia and their fast axonal transport in the spinal nerves was followed during a subsequent incubation period. Incubation of the ganglia in a medium where sucrose, choline chloride, or sodium isethionate replaced NaCl caused respectively an 88, a 37, or a 76% reduction in the quantity of proteins carried by the fast axonal transport system; no decrease in synthesis of labeled proteins was observed and protein transport followed the usual time course. Incubation of desheathed spinal nerves in a medium where sucrose replaced NaCl reduced by 67% the quantity of labeled proteins which were transported past the desheathed region. Although both the axons and the dorsal root ganglia exhibit the requirement for monovalent ions to maintain fast axonal transport, the possibility that the ionic requirements of the ganglia pertain to the somal portion of the nerve cell is discussed.  相似文献   

6.
We have examined the independent and combined effects of insulin insufficiency (streptozotocin (STZ)-induced diabetes, 85 mg/kg i.p.) and reduced muscle activity (denervation) (7 days) on basal, insulin-stimulated and contraction-stimulated glucose transport in rat muscles (soleus, red and white gastrocnemius). There were four treatments: control, denervated, diabetic, and denervated + diabetic muscles. Contraction-stimulated glucose transport was lowered (~ 50%) (p < 0.05) to the same extent in all experimental groups. In contrast, there was a much smaller reduction insulin-stimulated glucose transport in muscles from diabetic animals (18-24% reduction, p < 0.05) than in denervated muscles (40-60% reduction, p < 0.05) and in denervated + diabetic muscles (40-60% reduction, p < 0.05). GLUT-4 mRNA reduction was greatest in denervated + diabetic muscles (~ -75%, p < 0.05). GLUT-4 protein was decreased (p < 0.05) to a similar extent in all three experimental conditions (~ -30-40%). In conclusion, (1) muscle inactivity (denervation) and STZ-induced diabetes had similar effects on reducing contraction-stimulated glucose transport, but (2) muscle inactivity (denervation), rather than severe diabetes, produced a 2-fold greater impairment in skeletal muscle insulin-stimulated glucose transport.  相似文献   

7.
These studies have been carried out in rabbits with alloxan-induced diabetes in order to see if insulin deficiency affects low density lipoprotein (LDL) catabolism. The results showed that plasma LDL-cholesterol was lower in diabetic rabbits, associated with a fall in the cholesterol to protein ratio of LDL particles. In addition, 125I-LDL disappeared more slowly from plasma of diabetic rabbits, leading to a significant reduction in fractional catabolic rate and a decrease in residence time of 125I-LDL. These data demonstrated that LDL composition and catabolism are greatly altered as a consequence of insulin deficiency.  相似文献   

8.
We have developed a model that accounts for the effect of a non-uniform distribution of tau protein along the axon length on fast axonal transport of intracellular organelles. The tau distribution is simulated by using a slow axonal transport model; the numerically predicted tau distributions along the axon length were validated by comparing them with experimentally measured tau distributions reported in the literature. We then developed a fast axonal transport model for organelles that accounts for the reduction of kinesin attachment rate to microtubules by tau. We investigated organelle transport for two situations: (1) a uniform tau distribution and (2) a non-uniform tau distribution predicted by the slow axonal transport model. We found that non-uniform tau distributions observed in healthy axons (an increase in tau concentration towards the axon tip) result in a significant enhancement of organelle transport towards the synapse compared with the uniform tau distribution with the same average amount of tau. This suggests that tau may play the role of being an enhancer of organelle transport.  相似文献   

9.
Diabetes mellitus was induced in rabbits by alloxan monohydrate. At the end of six-week period, animals of the control and diabetic groups (8 rabbits each) were sacrificed and their hearts were excised and perfused using Langendorff apparatus. Results revealed that diabetes had adverse effects on myocardial perfusion. The baseline coronary flow and maximum coronary flow were significantly reduced in diabetic hearts as compared with those of the control. The maximum total coronary flow tended to decrease in the diabetic hearts. Products of the metabolic changes which accompanied diabetes might have directly and/or indirectly caused the observed reduction in the coronary vascular capacity of the diabetic heart.  相似文献   

10.
The effects of heat stress on protein synthesis and fast axonal transport were examined in an in vitro bullfrog primary afferent neuron preparation. The magnitude of effect was determined for individual [35S]methionine-labelled protein species separated via two-dimensional gel electrophoresis. Elevation of temperature of the preparation from 18 degrees C to 33 degrees C caused a transient inhibition of synthesis of non-heat-shock proteins, whereas the synthesis of a 74,000-dalton protein increased to 927% of controls after 4 h. Similar prolonged stress conditions had no effect on the relative abundance of 36 individual, newly synthesized proteins undergoing fast axonal transport. A dramatic exception was represented by a 55,000-dalton glycoprotein whose fast transport was increased to 291% of control. The increase in transport of this protein during a time when synthesis and transport of other non-heat-shock proteins were not enhanced suggests that it may play a unique role in the early cellular events that mediate survival or thermotolerance in the neuron.  相似文献   

11.
Glycation of Brain Actin in Experimental Diabetes   总被引:4,自引:0,他引:4  
Abstract: Actin is a neuronal protein involved in axonal transport and nerve regeneration, both of which are known to be impaired in experimental diabetes. To determine if actin is subject to glycation, we rendered rats diabetic by injection of streptozotocin. Two or 6 weeks later brains were removed and a preparation of cytoskeletal proteins was analyzed by two-dimensional polyacrylamide gel electrophoresis. Brains from diabetic animals contained an extra polypeptide that migrated close to actin and reacted with monoclonal antibody C4 against actin. It was also found in a preparation of soluble synaptic proteins from diabetic rat brain, indicating that it was at least partly neuronal in origin. This polypeptide could be produced by incubation of cytoskeletal proteins from brains of nondiabetic rats with glucose-6-phosphate in vitro. The appearance of this glycated actin in diabetic animals was prevented by administration of insulin for a period of 6 weeks. We could not detect any effect of glycation in vitro on the ability of muscle G-actin to form F-actin filaments and its significance for the function of actin remains to be determined. The finding that glycation of platelet-derived actin from diabetic patients was significantly increased implies that the abnormality may also occur in clinical diabetes.  相似文献   

12.
The synthesis and transport of slowly transported polypeptides in sciatic nerves of rats was investigated by [35S]methionine pulse labeling and gel electrophoresis in control, diabetic, and insulin-treated diabetic rats. To detect very early changes diabetes was induced by streptozocin only 5 days prior to the labeling of the dorsal root ganglion cells. Fourteen days were allowed for axonal transport. In this experimental system, the neurofilament triplet is transported at an apparent velocity of 1.1 +/- 0.1 mm/day (mean +/- SD). The actin-related complex, including actin and two polypeptides of 87 kilodaltons and 37 kilodaltons, was transported at a velocity of 2.6 +/- 0.2 mm/day. For alpha- and beta-tubulin we found an apparent transport velocity of 2.2 +/- 0.1 mm/day, placing it between actin and the neurofilament triplet. The diabetic rats had a selective 32% decrease in the amount of the heaviest neurofilament subunit: 0.47 +/- 0.19% of trichloroacetic acid-insoluble radioactivity versus 0.69 +/- 0.17% in controls; 2p less than 0.05. This decrease was associated with a proximal accumulation of the two lighter neurofilament subunits. Insulin treatment of a diabetic group failed to normalize the changes of axonal transport and additional changes suggesting a hypoglycemic injury was observed.  相似文献   

13.
14.
The effect of in vitro exposure of bullfrog spinal nerves to 0.2 mM chlorimipramine on the density of axonal microtubules was studied in an attempt to clarify the mechanism by which chlorimipramine inhibits fast axonal transport. A 17-h exposure to chlorimipramine reduced the density of microtubules in unmyelinated axons by only 18%; this microtubular loss does not reach the upper limit of the range of microtubule reduction associated with inhibition of fast axonal transport. A 23-h exposure to chlorimipramine, which had decreased microtubular density in unmyelinated axons by 40% in a previous study, did not decrease microtubular density in myelinated axons in the present study. These results rule out microtubular destruction as the mechanism responsible for inhibition of fast orthograde axonal transport by chlorimipramine, and greatly reduce the likelihood that microtubular destruction plays a significant role in the inhibition of fast retrograde transport by chlorimipramine.  相似文献   

15.
The role of calcium in the initiation of fast axonal transport   总被引:3,自引:0,他引:3  
Incubation of neuronal cell bodies in a calcium-free medium depresses the amount, but not the rate, of fast axonal transport of [3H]protein. Under these conditions, which do not affect protein synthesis or general energy metabolism, less protein appears to be loaded onto the transport system. Depression of transport also is seen when cell bodies are exposed to medium containing Co2+; selective exposure of axons to this medium has no effect on transport. These findings have led to the concept of an initiation phase of fast axonal transport that comprises the events by which selected proteins are transferred from their polysomal sites of synthesis to the transport system. The divalent cation specificity of the Ca2+ requirement, and its occurrence subsequent to Golgi apparatus-associated glycosylation, suggest that proteins destined for fast axonal transport are routed through the soma in a manner similar to that of secretory proteins and integral membrane proteins in nonneural cells. This analogy is pursued to consider a scheme whereby Golgi-derived vesicles deliver fast-transported proteins to the axonal smooth endoplasmic reticulum. Possible roles of Ca2+ in the formation and exocytotic fusion of such vesicles are considered.  相似文献   

16.
Neurons transport newly synthesized membrane proteins along axons by microtubule-mediated fast axonal transport. Membrane proteins destined for different axonal subdomains are thought to be transported in different transport carriers. To analyze this differential transport in living neurons, we tagged the amyloid precursor protein (APP) and synaptophysin (p38) with green fluorescent protein (GFP) variants. The resulting fusion proteins, APP-yellow fluorescent protein (YFP), p38-enhanced GFP, and p38-enhanced cyan fluorescent protein, were expressed in hippocampal neurons, and the cells were imaged by video microscopy. APP-YFP was transported in elongated tubules that moved extremely fast (on average 4.5 micrometer/s) and over long distances. In contrast, p38-enhanced GFP-transporting structures were more vesicular and moved four times slower (0.9 micrometer/s) and over shorter distances only. Two-color video microscopy showed that the two proteins were sorted to different carriers that moved with different characteristics along axons of doubly transfected neurons. Antisense treatment using oligonucleotides against the kinesin heavy chain slowed down the long, continuous movement of APP-YFP tubules and increased frequency of directional changes. These results demonstrate for the first time directly the sorting and transport of two axonal membrane proteins into different carriers. Moreover, the extremely fast-moving tubules represent a previously unidentified type of axonal carrier.  相似文献   

17.
Cytoplasmic protein transport in axons (‘slow axonal transport’) is essential for neuronal homeostasis, and involves Kinesin‐1, the same motor for membranous organelle transport (‘fast axonal transport’). However, both molecular mechanisms of slow axonal transport and difference in usage of Kinesin‐1 between slow and fast axonal transport have been elusive. Here, we show that slow axonal transport depends on the interaction between the DnaJ‐like domain of the kinesin light chain in the Kinesin‐1 motor complex and Hsc70, scaffolding between cytoplasmic proteins and Kinesin‐1. The domain is within the tetratricopeptide repeat, which can bind to membranous organelles, and competitive perturbation of the domain in squid giant axons disrupted cytoplasmic protein transport and reinforced membranous organelle transport, indicating that this domain might have a function as a switchover system between slow and fast transport by Hsc70. Transgenic mice overexpressing a dominant‐negative form of the domain showed delayed slow transport, accelerated fast transport and optic axonopathy. These findings provide a basis for the regulatory mechanism of intracellular transport and its intriguing implication in neuronal dysfunction.  相似文献   

18.
Abstract: This study examined the effect of streptozotocin diabetes of 5 weeks duration on the profile of slow orthogradely transported radiolabelled protein in rat sciatic motoneurones. The diabetic rats showed a retardation of the tail of the slow-component profile. This selective retardation was unaffected by treatment with an aldose reductase inhibitor, although this treatment reduced the accumulation of sorbitol and prevented the depletion of myo -inositol in the sciatic nerves of the treated diabetic rats. Other groups, treated with myo -inositol, had normal or elevated sciatic nerve myo -inositol levels in the presence of accumulated sorbitol. The axonal transport profiles from both control and diabetic myo-inositol-treated groups gave normal tail velocities but an altered shape such that retardation of the tail of the profile may have been present in both. The study concludes that rats with 5 weeks streptozotocin diabetes show retardation of the velocity of the most slowly transported proteins in sciatic motoneurones, and that this defect is not linked to the polyol pathway.  相似文献   

19.
Anterograde slow and fast axonal transport was examined in rats intoxicated with 2,5-hexanedione (1 g/kg/week) for 8 weeks. Distribution of radioactivity was measured in 3-mm segments of the sciatic nerve after labelling of proteins with [35S]methionine or [3H]leucine and glycoproteins with [3H]fucose. The axonal transport of the anterograde slow components was examined after 25 (SCa) and 10 days (SCb), in motor and sensory nerves. SCa showed an increased transport velocity in motor (1.25 +/- 0.08 mm/day versus 1.01 +/- 0.05 mm/day) and in sensory nerves (1.21 +/- 0.13 mm/day versus 1.06 +/- 0.07 mm/day). The relative amount of labelled protein in the SCa wave in both fiber systems was also increased. SCb showed unchanged transport velocity in motor as well as in sensory nerves, whereas the amount of label was decreased in the motor system. Anterograde fast transport in motor nerves was examined after intervals of 3 and 5 h, whereas intervals of 2 and 4 h were used for sensory nerves. Velocities and amounts of labelled proteins of the anterograde fast component remained normal. We suggest that the increase in protein transport in SCa reflects axonal regeneration.  相似文献   

20.
Diabetes mellitus is the most common metabolic disorder in humans. Diabetic encephalopathy is characterized by cognitive and memory impairments, which have been associated with changes in the hippocampus, but the mechanisms underlying those impairments triggered by diabetes, are far from being elucidated. The disruption of axonal transport is associated with several neurodegenerative diseases and might also play a role in diabetes-associated disorders affecting nervous system. We investigated the effect of diabetes (2 and 8 weeks duration) on KIF1A, KIF5B and dynein motor proteins, which are important for axonal transport, in the hippocampus. The mRNA expression of motor proteins was assessed by qRT-PCR, and also their protein levels by immunohistochemistry in hippocampal slices and immunoblotting in total extracts of hippocampus from streptozotocin-induced diabetic and age-matched control animals. Diabetes increased the expression and immunoreactivity of KIF1A and KIF5B in the hippocampus, but no alterations in dynein were detected. Since hyperglycemia is considered a major player in diabetic complications, the effect of a prolonged exposure to high glucose on motor proteins, mitochondria and synaptic proteins in hippocampal neurons was also studied, giving particular attention to changes in axons. Hippocampal cell cultures were exposed to high glucose (50 mM) or mannitol (osmotic control; 25 mM plus 25 mM glucose) for 7 days. In hippocampal cultures incubated with high glucose no changes were detected in the fluorescence intensity or number of accumulations related with mitochondria in the axons of hippocampal neurons. Nevertheless, high glucose increased the number of fluorescent accumulations of KIF1A and synaptotagmin-1 and decreased KIF5B, SNAP-25 and synaptophysin immunoreactivity specifically in axons of hippocampal neurons. These changes suggest that anterograde axonal transport mediated by these kinesins may be impaired in hippocampal neurons, which may lead to changes in synaptic proteins, thus contributing to changes in hippocampal neurotransmission and to cognitive and memory impairments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号