首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Brain, Gut and Skin Peptide Hormones in Lower Vertebrates   总被引:1,自引:1,他引:0  
Understanding of peptide hormone evolution rests primarily onstructural information, either direct or inferred. We summarizestudies of fishes and amphibians to provide initial informationwithin the vertebrate lineage for selected peptides which exhibitvarying structural heterogeneity. For these peptides, thyrotropin-releasinghormone, somatostatin, luteinizing hormone-releasing hormoneand cholecystokinin related peptides manifest increasing diversification.Members of these peptide families are found distributed amonga variety of tissues (e.g., brain, gut, skin, retina, sympatheticnervous system), yet the number of genes encoding for individualtypes of peptides is presently uncertain. We emphasize the needfor additional structural information, for a more thorough anddiverse taxonomic investigation within the vertebrate lineage,and for specification of those genetic elements which ultimatelydetermine evolutionary opportunities for peptide evolution.  相似文献   

2.
3.
It has become apparent that the molecular and biochemical integrity of interactive families, genera, and species of human gut microflora is critically linked to maintaining complex metabolic and behavioral processes mediated by peripheral organ systems and central nervous system neuronal groupings. Relatively recent studies have established intrinsic ratios of enterotypes contained within the human microbiome across demographic subpopulations and have empirically linked significant alterations in the expression of bacterial enterotypes with the initiation and persistence of several major metabolic and psychiatric disorders. Accordingly, the goal of our review is to highlight potential thematic/functional linkages of pathophysiological alterations in gut microbiota and bidirectional gut–brain signaling pathways with special emphasis on the potential roles of gut dysbiosis on the pathophysiology of psychiatric illnesses. We provide critical discussion of putative thematic linkages of Parkinson’s disease (PD) data sets to similar pathophysiological events as potential causative factors in the development and persistence of diverse psychiatric illnesses. Finally, we include a concise review of preclinical paradigms that involve immunologically–induced GI deficits and dysbiosis of maternal microflora that are functionally linked to impaired neurodevelopmental processes leading to affective behavioral syndromes in the offspring.  相似文献   

4.
5.
Does exploration of the gut microbiota–brain axis expand our understanding of what it means to be human? Recognition and conceptualization of a gut microbiota–brain axis challenges our study of the nervous system. Here, integrating gut microbiota–brain research into the metaorganism model is proposed. The metaorganism—an expanded, dynamic unit comprising the host and commensal organisms—asserts a radical blurring between man and microbe. The metaorganism nervous system interacts with the exterior world through microbial‐colored lenses. Ongoing studies have reported that gut microbes contribute to brain function and pathologies, even shaping higher neurological functions. How will continued collaborative efforts (e.g., between neurobiology and microbiology), including partnerships with the arts (e.g., philosophy), contribute to the knowledge of microbe‐to‐mind interactions? While this is not a systemic review, this nascent field is briefly described, highlighting ongoing challenges and recommendations for emerging gut microbiota–brain research. Also see the video abstract here https://youtu.be/lP9gOW8StXg .  相似文献   

6.
7.
Hyperphagic obesity is characterized in part by a specific increase in meal size that contributes to increased daily energy intake, but the mechanisms underlying impaired activity of meal size regulatory circuits, particularly those converging at the caudomedial nucleus of the solitary tract in the hindbrain (cmNTS), remain poorly understood. In this paper, we assessed the consequences of high-fat (HF) feeding and diet-induced obesity (DIO) on cmNTS nutrient sensing and metabolic integration in the control of meal size. Mice maintained on a standard chow diet, low-fat (LF) diet or HF diet for 2 weeks or 6 months were implanted with a bilateral brain cannula targeting the cmNTS. Feeding behavior was assessed using behavioral chambers and meal-pattern analysis following cmNTS L-leucine injections alone or together with ip CCK. Molecular mechanisms implicated in the feeding responses were assessed using western blot, immunofluorescence and pharmacological inhibition of the amino acid sensing mTORC1 pathway (mammalian target of rapamycin complex 1). We found that HF feeding blunts the anorectic consequences of cmNTS L-leucine administration. Increased baseline activity of the L-leucine sensor P70 S6 kinase 1 and impaired L-leucine-induced activation of this pathway in the cmNTS of HF-fed mice indicate that HF feeding is associated with an impairment in cmNTS mTOR nutritional and hormonal sensing. Interestingly, the acute orexigenic effect of the mTORC1 inhibitor rapamycin was preserved in HF-fed mice, supporting the assertion that HF-induced increase in baseline cmNTS mTORC1 activity underlies the defect in L-leucine sensing. Last, the synergistic feeding-suppressive effect of CCK and cmNTS L-leucine was abrogated in DIO mice. These results indicate that HF feeding leads to an impairment in cmNTS nutrient sensing and metabolic integration in the regulation of meal size.  相似文献   

8.
Gut reaction     
《Nature medicine》2000,6(2):130
  相似文献   

9.
Gut warfare     
Check E 《Nature medicine》2007,13(2):116-117
  相似文献   

10.
Gut fungi     
Herbivores consume large quantities of cellulose and other plant cell wall (fibre) carbohydrates yet generally lack the enzymes to digest them. This has led to the evolution of specialized portions of the gut, such as the rumen and caecum, which contain large populations of digestive anaerobic microorganisms. Diverse bacteria and protists from this environment have been studied for over a hundred years but it is only recently that a significant population of highly specialized flagellate fungi have been identified. These fungi are important in fibre digestion. Their diversity, properties, activities, phylogeny and possible economic significance are the subjects of this review.  相似文献   

11.
Gut reaction     
A. M. Todkill 《CMAJ》1999,160(6):872
  相似文献   

12.
13.
Gut check     
《Current biology : CB》2020,30(19):R1099-R1104
  相似文献   

14.

Objective

The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans.

Methods

Meal tests with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition.

Results

Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose tolerance, insulin secretion or plasma lipid concentrations were found. Apart from an acute and reversible increase in peptide YY secretion, no changes were observed in postprandial gut hormone release.

Conclusion

As evaluated by selective cultivation of gut bacteria, a broad-spectrum 4-day antibiotics course with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males.

Trial Registration

clinicaltrials.gov NCT01633762  相似文献   

15.
人体肠道中存在着数量庞大和种类繁多的细菌,这些细菌及其代谢产物在代谢、免疫、内分泌、神经等方面起着重要作用,对于人类的健康有着重要影响。近年来越来越多的研究表明,正常的肠道菌群在维持大脑的发育与功能方面扮演着重要角色,而肠道菌群的失调与一些神经精神疾病密切相关,例如帕金森症、多发性硬化、抑郁、自闭症等。本文就肠道菌群与神经精神疾病的关系作一综述。  相似文献   

16.
肠道菌群是居住于人体肠道内的正常微生物群体。肠道菌群通常与宿主成共生关系,并与宿主的消化、代谢、免疫调节等生理活动息息相关。靶向作用于免疫检查点的免疫检查点抑制剂,作为肿瘤免疫治疗中的新星,有着逆转肿瘤免疫微环境的作用,为肿瘤治疗提供了新的希望。然而研究发现,有部分人群对免疫检查点抑制剂的治疗无响应,而导致其无响应的最主要的原因是肠道菌群的异常。因此,本文对肠道菌群与肿瘤免疫治疗特别是与免疫检查点抑制剂的研究现状进行综述。  相似文献   

17.
近年来随着过敏性哮喘发病率的持续升高,人们开始注意到环境、生活方式的改变可能会影响过敏性哮喘的发生。流行病学调查显示,过敏性哮喘的发生和发展与生命早期肠道菌群的紊乱密切相关。本研究主要综述近年来肠道菌群对过敏性哮喘发生的影响及机制,探讨影响肠道菌群定植的主要因素,以及微生态调节剂在过敏性哮喘等变应性疾病中的预防和治疗作用。  相似文献   

18.
拟杆菌与肠道微生态   总被引:2,自引:0,他引:2  
人和动物的肠道正常微生态体系对于维持机体的健康有重要作用.文章主要介绍了肠道中的优势厌氧菌--拟杆菌的作用及其作用机理,从其基因组角度揭示它对宿主益生作用的根源,为进一步认识动物与其共生菌的互惠关系提供了重要依据,同时也为动物肠道疾病的防治提供重要的理论基础.  相似文献   

19.
肠道微生态与肥胖   总被引:1,自引:0,他引:1  
人的肠道是一个丰富的微生态系统,含有100万亿多的微生物,种类多达500-1000个,这些微生物的基因总数是人体基因组所含基因总数的100倍。肠道微生物丛的组成种类和数量与宿主的肥胖有关,无菌小鼠含有的脂肪量比正常饲养小鼠低42%,如果将微生物丛植入到无菌小鼠体内后,导致脂肪总量增加57%。提示肠道微生物丛可以明显的促进小鼠对热能的摄人,促使脂肪的沉积,触动全身性炎症反应。因此,对肥胖的治疗可以采用益生菌和益生元来调节肠道微生物丛的状态以期获得治疗效果。本研究述及肠道微生丛对宿主肥胖及其代谢机制的研究进展。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号