首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study compares the effects of conventional controlled-rate freezing and vitrification on the morphology and metabolism of in vitro-produced bovine blastocysts. Day 7 expanded blastocysts cultured in synthetic oviduct fluid with 5% fetal calf serum were frozen in 1.36 M glycerol, 0.25 M sucrose or vitrified in 25% glycerol, 25% ethylene glycol. Cell alterations and in vitro development were evaluated immediately after thawing or after 72 h. The effect of cryopreservation on inner cell mass and trophectoderm (TE) cell number as well as glucose, pyruvate, and oxygen uptakes, and lactate release by blastocysts were evaluated. Immediately after thawing, blastocysts showed equivalent cell membrane permeabilization after both cryopreservation procedures, while alterations in nuclear staining were more frequent in vitrified embryos. After culture, similar survival and hatching rates were observed. Both procedures decreased cell number immediately after thawing and after 72 h. However, the number of TE cells was lower in frozen embryos than in vitrified ones. In relation to this, frozen blastocysts showed a decrease in glucose, pyruvate, and oxygen uptake, although those parameters were not altered in vitrified embryos. An increased glycolytic activity was also observed in frozen embryos, indicating a stress response to this procedure.  相似文献   

2.
应用乙二醇冷冻小鼠胚胎:优化和简化程序的探索   总被引:1,自引:0,他引:1  
提高解冻胚胎的发育能力和简化冷冻解冻程序是胚胎冷冻研究的两大永恒的主题。尽管乙二醇(EG)广泛用于家畜胚胎冷冻,但很少用于冷冻小鼠和人胚胎。为数很少的以EG慢冻小鼠或人胚胎的研究均采用较为复杂的人胚冷冻程序,未见简化程序和用EG冷冻小鼠桑椹胚的报道。采用简单的牛胚胎冷冻程序研究了发育时期、EG浓度、平衡方法、添加蔗糖以及解冻后脱除EG等对小鼠胚胎冻后发育能力的影响。结果显示:(1)致密晚期桑椹胚冻后体外培养囊胚发育率(81.92%±2.24%)和孵出率(68.56%±2.43%)显著(P<0.05)高于4-细胞、8-细胞胚胎和致密早期桑椹胚胎;(2)1.8mol/L EG冷冻小鼠致密晚期桑椹胚的囊胚发育和孵出率显著高于其它浓度;(3)在EG中平衡10min的冻后囊胚发育显著好于平衡5、20或30min;(4)两步平衡冷冻胚胎的囊胚发育率和孵出率显著高于一步平衡;(5)用EG冷冻小鼠胚胎无需添加蔗糖;(6)解冻后可不脱除EG;(7)冻后发育的早期囊胚和囊胚细胞数明显少于体内发育胚胎。因此,用EG冷冻小鼠胚胎的最佳方案为:致密晚期桑椹胚用1.8mol/L EG不添加蔗糖、两步平衡15min、以简单的牛胚胎冷冻程序冷冻解冻、解冻后不脱除EG直接培养或移植。  相似文献   

3.
Cryopreservation of murine embryos with trehalose and glycerol   总被引:6,自引:1,他引:5  
Several concentrations of trehalose (0.0, 0.04, 0.1, 0.25 M) in combination with three concentrations of glycerol (1.0, 1.5, 2.0 M) were evaluated for the cryopreservation of murine embryos. Embryos were transferred through increasing concentrations of glycerol in Dulbecco's phosphate-buffered saline with 10% fetal calf serum (PBS + FCS) to reach the final glycerol concentrations. They were then randomly assigned to one of the concentrations of trehalose. A total of 506 morulae were packaged individually in 0.25-ml plastic straws and cooled from ambient temperature at 1.0 degrees C/min in a programmable methanol freezer. Embryos were seeded at -7 degrees C and then cooled to -25 degrees C at 0.3 degrees C/min before being plunged into liquid nitrogen. After thawing and a one-step dilution of glycerol, embryos were cultured for 48 hr and viability was determined by blastocoel formation. Highest viability (70.0%) after 48 hr in culture was obtained for embryos frozen in 1.5 M glycerol plus 0.10 M trehalose as compared to 31% viability for embryos frozen with glycerol alone. These observations suggest that trehalose can be used in combination with glycerol as a cryoprotectant and that a high rate of viability can be achieved after a one-step dilution of the cryoprotectants.  相似文献   

4.
In this study, the cryoprotectant ethylene glycol (EG) was tested for its ability to improve and facilitate the cryopreservation of in vitro produced (IVP) bovine embryos. Embryos were cryopreserved in EG solutions supplemented with either newborn calf serum (NBCS) or polyvinyl alcohol (PVA). To assess EG toxicity, the embryos were equilibrated in EG concentrations from 1.8 to 8.9 M at room temperature for 10 min and then cultured for 72 h on a cumulus cell monolayer. The hatching rate was highest for day 7 blastocysts frozen in 3.6 M EG (98%) and was not different from the control group (85%). The controlled freezing (0.3 degrees C/min to -35 degrees C) of expanded day 7 blastocysts resulted in a hatching rate of 81%, which was similar to that of the nonfrozen controls (76%). Differential staining revealed only very few degenerate blastomeres attributed to freezing and thawing. Upon direct nonsurgical transfer of day 7 expanded blastocysts frozen in 3.6 M EG, a pregnancy rate of 43% was achieved, while the pregnancy rate after transfer of other developmental stages was significantly lower (22% with expanded day 8 blastocysts). When bovine IVP embryos were incubated at room temperature in 7.2 M EG preceded by preequilibration in 3.6 M EG, the hatching rate of day 7 expanded blastocysts reached 93%. Upon vitrification of IVP day 7 and day 8 blastocysts and expanded blastocysts in 7.2 M EG, the latter showed a higher hatching rate (42%) than blastocysts (12%). Overall, PVA as supplement to the basic freezing solution instead of NBCS had deleterious effects on survival after controlled freezing or vitrification. The simple cryopreservation protocol employed in this study and the low toxicity of ethylene glycol highlight the usefulness of this approach for controlled freezing of IVP embryos. However, further experiments are needed to improve the pregnancy rate following embryo transfer and to enhance survival after vitrification.  相似文献   

5.
The aim of this work was to investigate the possibilities of simplification, and to outline the limits of application, of a vitrification method for cow embryos. Morulae and blastocysts were produced by in vitro fertilization of slaughterhouse-derived, in vitro matured oocytes with frozen-thawed bull semen, and subsequent culture on a granulosa cell monolayer. Vitrification was performed by equilibration of embryos with 12.5% ethylene glycol and 12.5% dimethylsulphoxide at 20–22°C for 60 s, then with 25% ethylene glycol and 25% dimethylsulphoxide at 4°C for another 60 s. Embryos were then loaded in straws, placed in liquid nitrogen vapour for 2 min, and then plunged. Straws were thawed in a 22°C water-bath, the embryos were directly rehydrated and further incubated in straw, and were then expelled and cultured in vitro for 72 h. In the first experiment, embryos of different age and developmental stage (Day 5 compacted morulae, Day 6 early blastocysts, Days 6 and 7 blastocysts, Day 7 expanded blastocysts and Day 8 hatched blastocysts) as well as Days 7 and 5 blastocysts previously subjected to partial zona dissection were vitrified. After thawing, the re-expansion rates of blastocysts and zona-dissected embryos did not differ (67 and 87%, respectively), and hatching was more frequent for blastocysts frozen in advanced developmental stages (34, 47 and 63% for early blastocysts, blastocysts and expanded blastocysts, respectively). The re-expansion rate of morulae was lower (10%) and no hatching of these embryos was observed. In the second experiment, Day 7 expanded blastocysts were vitrified using PBS, PBS + albumin, TCM199 and TCM199 + calf serum as holding media. No differences in re-expansion and hatching rates were seen. However, when incubation with the concentrated cryoprotectant solution was performed at 20–22°C, the embryo survival rate decreased (PBS + albumin) or no embryo survived (TCM199 + calf serum) the vitrification procedure. In the third experiment, Day 7 expanded blastocysts were vitrified, thawed, cultured for 1 day, and then re-expanded embryos were again vitrified and thawed. Out of the 87% that survived the first cycle, 73% re-expanded and 47% hatched following the second vitrification and thawing. These observations prove that the vitrification procedure described is relatively harmless, that it can be used for blastocysts of different developmental stages and that an intact zona is not required to obtain high survival rates.  相似文献   

6.
In vitro and in vivo developmental competence of fresh and cryopreserved in vitro produced (IVP) bovine embryos was evaluated up to birth. Three experiments were done. The objective in the first experiment was to develop an optimal vitrification procedure for IVP bovine embryos by determining effects of exposure time (2, 5, 10, 20 min) and temperature (4, 22, 27 degrees C) in cryoprotective agents prior to vitrification on their post-thaw viability. The best combination was used in Experiments 2 and 3. In the second experiment, the importance of post-thaw morphologic selection on pregnancy rates was determined by transferring either selected or unselected single embryos. In the third experiment, pregnancy initiation, maintenance and calving results of vitrified embryos were compared with fresh and conventionally frozen embryos. Fetal losses, birth weights, gestation lengths and frequency of dystocia in the third experiment were monitored. The interaction of exposure time and temperature on both post-thaw re-expansion and hatching rates was significant (P < 0.01). Five minute exposure at 27 degrees C was optimal. In the second experiment, post-thaw selected vitrified embryos had higher pregnancy rates than unselected embryos (P < 0.05). In the third experiment, the pregnancy rate of vitrified embryos did not differ from that of fresh embryos (P > 0.05). However, pregnancy rate of conventionally frozen embryos was lower than that of fresh or vitrified embryos (P < 0.05). Of 92 calves born, 53 were male and 39 were female. Birth weights and dystocia scores of single-born calves did not differ between sexes (P > 0.05). Twin-born calves were lighter than single-born calves (P < 0.05). Overall, the data demonstrate that the transfer of vitrified IVP bovine embryos can result in healthy, apparently normal calves similar to those derived from transfer of fresh and conventionally frozen IVP bovine embryos.  相似文献   

7.
The morphology of the inner cell mass (ICM) cells and the proportion of dead ICM cells in frozen-thawed bovine preimplantation embryos were investigated by differential fluorochrome staining. Embryos at the blastocyst stage of development were frozen and thawed by two different techniques (three-step and one-step) in two different basic salt solutions (PBS and TCM 199) containing 1.36M glycerol. After thawing and glycerol removal, embryos were co-cultured in a cumulus cells monolayer in TCM 199 for 48 hr (morula) or 24 hr (blastocysts). Differential cell counts of the ICM and trophectoderm were then done using differential fluorochrome staining. Overall, there was no significant difference in the viability of embryos frozen in the two basic salt solutions. Low proportions of dead ICM cells were observed in embryos frozen at the morula stage in both PBS (19.1%) or TCM 199 (18.0%). However, blastocyst stage embryos frozen by the three-step technique had a higher (P < 0.05) proportion of dead ICM cells in TCM 199 (37.7%) than in PBS (18.2%). Blastocysts frozen by the one-step technique had a higher (P < 0.05) proportion of dead ICM cells (42.2%) than those frozen by the three-step technique (18.2%), regardless of basic salt solutions. Results indicate that freezing and thawing damages ICM cells in morphologically normal embryos and that the degree of damage depended on the basic salt solution and the freezing method. © 1994 Wiley-Liss, Inc.  相似文献   

8.
This study evaluates the effect of coculture with goat oviduct epithelial cells (GOEC) on the pregnancy rate, embryo survival rate and offspring development after direct transfer of vitrified/thawed caprine in vitro produced (IVP) embryos. Oocytes were recovered from slaughterhouse goat ovaries, matured and inseminated with frozen/thawed capacitated semen, and presumptive zygotes were randomly cultured in synthetic oviduct fluid (SOF) (n=352) or GOEC (n=314). The percentage of cleaved embryos reaching the blastocyst stage was 28% and 20% in SOF and GOEC, respectively (P<0.05). Overall, 26 blastocysts of SOF were transferred freshly in pairs to recipient goats, whereas 58 of SOF and 36 of GOEC were vitrified and transferred directly in pairs to recipient goats after thawing without removal of cryoprotectants or morphological evaluation. The kidding rate was 92% for SOF fresh, 14% for SOF vitrified (P<0.001) and 56% for GOEC vitrified (P<0.05); the difference was also significant between vitrified groups (P<0.01). The embryo survival rate was 62% for SOF fresh, 9% for SOF vitrified (P<0.001) and 33% for GOEC vitrified (P<0.05) with a significant difference between vitrified groups (P<0.01). The results showed that the coculture of IVP goat embryos with GOEC significantly improves the pregnancy and embryo survival rates and leads to the birth of healthy offspring. However, further research using more defined GOEC coculture is required to confirm its capacity to increase the success rate of IVP embryo technology in goat.  相似文献   

9.
Eight-cell mouse embryos were frozen in 0.5-ml plastic straws in modified Dulbecco's phosphate buffered saline (PBS) plus 5% steer serum plus either 1.32 M dimethyl sulfoxide (DMSO) or 1.32 M glycerol. Upon thawing, embryos were diluted 1:4 with 0.0, 0.2, 0.6, or 1.0 M sucrose solutions within the straws. Thawing was either in air at ambient temperature or in 8 degrees C or 38 degrees C water. After 48 h of culture, more embryos frozen in DMSO and thawed in 8 degrees C and 37 degrees C water developed to blastocysts (87 and 93%, respectively) than embryos thawed in air (75%; P < 0.05). No significant differences in development were noted among the three thawing regimens when embryos were frozen with glycerol. There was no significant effect of concentration of sucrose during dilution on development of embryos postthaw. With glycerol as the cryoprotectant, damage to zonae pellucidae increased as thawing rates increased, whereas the opposite was observed with DMSO as the cryoprotectant (P < 0.05).  相似文献   

10.
Vitrification of in vivo and in vitro produced ovine blastocysts.   总被引:2,自引:0,他引:2  
Although cryopreservation of bovine embryo has made great progress in recent years, little achievement was obtained in ovine embryo freezing, especially in vitro produced embryos. However, a simple and efficient method for cryopreservation of sheep embryos will be important for application of ovine embryonic techniques such as in vitro fertilization, transgenic, cloning and etc. In this study ovine blastocysts, produced in vivo or in vitro, were cryopreserved by vitrification in EFS40 (40% ethylene glycol (EG), 18% ficoll and 0.5 M sucrose) or GFS40 (40% glycerol (GL), 18% ficoll and 0.5 Mol sucrose). In vitro produced, early blastocysts were directly plunged into liquid nitrogen (LN2) after preparation by one of the following procedures at 25 degrees C: (A) equilibration in EFS40 for 1 min; (B) equilibration in EFS40 for 2 min; (C) equilibration in EFS40 for 30 s following pretreatment in 10% EG for 5 min; (D) equilibration in EFS40 for 30 s following pretreatment in EFS20 for 2 min (E) equilibration in GFS30 for 30 s following pretreatment in 10% GL for 5 min. The survival rates observed after thawing and in vitro culture for 12 h were A 78.0% (39/50), B 50.0% (26/52), C 93.3% (70/75), D 92.0% (46/50) and E 68.0% (34/50). Survival rates were not significantly different for treatments C and D (p>0.05), but those for groups C and D were significantly higher than for A, B and E (p<0.05). After 24 h in vitro culture, hatched blastocyst rates were A 28.0% (14/50), B 21.1% (11/52), C 49.3% (37/75), D 48.0% (24/50), E 32.0% (16/50) and control 54.0% (27/50). The hatching rates for groups A, B and E were significantly lower than the control (p<0.05) in which early IVF blastocysts were cultured in fresh SOFaaBSA medium following treatment in PBS containing 0.3% BSA for 30 min, but for groups C and D it was similar to the control (p>0.05). The freezing procedures A, B and C were used to vitrify in vivo produced, early blastocysts recovered from superovulated ewes. The survival rates of frozen-thawed in vivo embryos were A 94.7% (72/76), B 75.0% (45/60) and C 96.4% (54/56) and for group B was significantly lower than for the other two treatment groups (p<0.05). Hatched blastocyst rates were A 46.0% (35/76), B 26.6% (16/60), C 51.8% (29/56) and the control 56.7% (34/60) in which early blastocysts from superovulation were cultured in fresh SOFaaBSA medium following treatment in PBS containing 0.3% BSA for 30 min. The hatching rate for treatment B was significantly lower than for the control (p<0.05) but did not differ between groups A, C and the control (p>0.05). Frozen-thawed embryos vitrified by procedure C were transferred into synchronous recipient ewes. Pregnancy and lambing rates were similar for embryos transferred fresh or frozen/thawed for both in vivo and in vitro produced embryos. These rates did not differ between in vivo and in vitro embryos transferred fresh (p>0.05). However, for frozen-thawed embryos, both rates were significantly lower for in vitro than for in vivo produced embryos (p<0.05).  相似文献   

11.
For the purpose of ascertaining parameters to embryo transfer on some domestic animals, mouse morulae were used as a model to investigate the effect of in-straw thawing on in vitro and in vivo-development of vitrified embryos. Embryos were vitrified in 0.25 ml straws preloaded with dilution solution (0.5 M Sucrose) and thawed in the straw by mixing the vitrification solution (Ethylene glycol + Ficoll 70 + Sucrose) and the dilution solution at 25 degrees C. The embryos were randomly divided into six groups and expelled from the straws after they had been suspended in the in-straw mixture for 3 min, 5 min, 8 min, 12 min, 16 min, and 20 min, respectively, and then they were collected under a microscope for in vitro culture or direct transfer. The in vitro developmental rates of the embryos were 92.3% to 98.4% and hatching rates were 64.1% to 75.6% for the groups of 3 min to 16 min, showing no significant differences with those of nonfrozen controls (100%, 76.2%; P > 0.05). While embryos were suspended in the straw for 20 min, the developmental rate (86.6%) and hatching rate (52.4%) were significant lower than those of the control (100%, 76.2%; P < 0.01). When the 168 frozen-thawed embryos (in-straw thawing for 5 min) and 168 fresh embryos were transferred, respectively, the proportion of live fetuses in the pregnant recipients between them (58.7% vs. 54.5%) showed no significant difference (P > 0.05). The data indicate that vitrification with EFS30 and suspension in the in-straw mixture for 3 min to 16 min, when thawing, did not affect the in vitro developmental rate and hatching rate. Moreover, the in vivo developmental rate between vitrified embryos and fresh embryos did not differ significantly. It can be concluded that this method is fit for nonsurgical embryo transfer in some domestic animals with a suggestion that the operation of embryo transfer should be accomplished within 16 min.  相似文献   

12.
The survival of whole and bisected rabbit morulae cryopreserved by the vitrification method was investigated. The embryos were loaded in a column of vitrification solution (VS, a mixture of 25% glycerol and 25% 1, 2-propanediol in PBS+16% calf serum), which was located between two columns of 1 M sucrose solution in a plastic straw. The embryos were frozen by being plunged into liquid nitrogen and thawed in a water bath at 20 degrees C. Two methods of loading embryos into straws were used: the single and double column vitrification solution methods. The embryonic survival rates between these two methods were compared. Seventy-one (86.6%) out of 82 morulae vitrified in double column straws developed into the blastocyst stage in vitro. Eleven (18.3%) live fetuses were obtained after the transfer of 60 frozen-thawed morulae to four recipients. By contrast, the survival rate (36.5%, 27 74 ) of embryos vitrified in the single column straws was significantly lower (P<0.05). The vitrification solution of the single column straws became opaque, indicating ice-crystal formation, upon thawing in 5 of 11 straws, which was assumed to have damaged the embryos. More than 80% (29 36 ) of the bisected morulae frozen and thawed in the double column straws developed to the blastocyst stage in vitro when cryoprotectant was diluted stepwise with 1 M and 0.25 M sucrose solution. When the cryoprotectant was removed by one-step dilution with 1 M sucrose solution, swelling in blastomeres was observed and the development rate of the recovered embryos decreased (45.8%, 11 24 ). These results indicate that the vitrification method employed in our experiment is not only efficient for the cryopreservation of rabbit morulae, but it can also be used for the preservation of bisected rabbit morulae, which had not been successful using previous methods.  相似文献   

13.
Data on biopsied, sexed and cryopreserved in vitro produced (IVP) bovine embryos, and their in vivo developmental competence are very limited. Two preliminary studies were conducted before the primary study. In Experiment 1, post-thaw in vitro developmental competence of biopsied and vitrified IVP embryos was evaluated using re-expansion as an endpoint. In Experiment 2, the pregnancy rates of biopsied fresh, frozen or vitrified embryos following single embryo transfer were compared. Since vitrified embryos resulted in a higher pregnancy rate than frozen-thawed embryos, in the primary study (Experiment 3), all IVP embryos were vitrified following biopsy and sexing (by DNA fingerprinting). In Experiment 3, we compared pregnancy initiation and calving results of heifers in the following treatments: 1) artificial insemination (AI); 2) AI plus contralateral transfer of a single embryo (AI + SET); 3) ipsilateral transfer of single embryo (SET); or 4) bilateral transfer of two embryos (DET). Birth weights, gestation lengths and dystocia scores were recorded. In Experiment 1, post-thaw re-expansion rate of biopsied and vitrified embryos was 85% (70/82). In Experiment 2, pregnancy rates (90 d) were 44% (7/16), 23% (3/13), and 50% (7/14) for vitrified, frozen and fresh embryos, respectively (P < 0.10). In Experiment 3, pregnancy rates of AI and SET were 65% (20/31) and 40% (16/40), respectively (P < 0.05). The pregnancy rate of AI + SET was 75% (27/36) with 11 carrying twins, and the pregnancy rate of DET was 72% (26/36) with 10 carrying twins. All AI fetuses were carried to term, but only half the SET fetuses were carried to term. Similar calving rates were observed in the AI + SET and DET groups, 76 and 70%, respectively, of those pregnant at Day 40. Mean birth weight, dystocia score and gestation length of AI calves were not different from those of SET calves. Mean birth weight and dystocia score of single-born calves were greater than those of twin born calves (P < 0.05). These data demonstrate that biopsied IVP bovine embryos can be successfully cryopreserved by vitrification and following post-thaw embryo transfer, acceptable rates of offspring with normal birth weights can be obtained without major calving difficulties.  相似文献   

14.
Two experiments were designed to test the use of a new device designed to vitrify and in-straw warm in vitro produced (IVP) embryos, which can potentially be used for their direct transfer to recipient females in field conditions. In experiment 1, IVP embryos from both prepubertal and adult animals were vitrified on cryotops and warmed in steps (1, 0.5 and 0 M sucrose; protocol W3) or directly in 0.5 M (protocol W1/0.5) or 0 M sucrose (protocol W1/0). Similar survival rates were recorded 24 h after warming for calf embryos irrespective of the warming procedure (W3: 79.2%, W1/0.5: 62.5%, W1/0: 66.7%). For cow embryos, survival rates at 24 h post-warming were significantly higher when embryos were warmed using the W3 (85.7%) or W1/0.5 (89.1%) protocols compared to the W1/0 protocol (70.5%). In experiment 2, IVP embryos were vitrified on the new designed device followed by their in-straw cryoprotectant (0.5 M sucrose) dilution/warming and different warming temperatures (45, 50, 60 and 70 °C) were tested. When warming solution passed through the new vitrification/warming device at 45 °C, 61.5% of blastocysts were fully re-expanded or hatched at 24 h post-warming, being not significantly different to the control (65%). Other warming temperatures triggered significantly lower survival rates at 24 h post-warming. No significant differences were detected in total cell numbers and blastocyst apoptosis indices in response to vitrification followed by warming at 45 °C respect to the control. Our findings indicate that the new device allows vitrification and in-straw warming of IVP bovine embryos, being a useful option for their direct transfer in field conditions.  相似文献   

15.
The objective of this experiment was to compare the in vitro survival and hatching rates of OPS-vitrified porcine blastocysts obtained after conventional (three-step dilution) or direct (one-step dilution) warming procedures. Expanded blastocysts were collected by laparotomy from weaned crossbred sows (n=7) on Day 6 of the cycle (D0: onset of estrus). Vitrification was performed as described by Berthelot et al. [Cryobiology 41 (2000) 116] using 17% (v/v) ethylene glycol and 17% (v/v) dimethyl-sulfoxide in the second vitrification medium. Conventional warming was carried out by plunging straws containing embryos in 800 microl of TCM199 Hepes containing 20% new born calf serum (TCM-NBCS) and 0.13 M sucrose for 1 min. Embryos were then transferred to another well with the same medium for 5 min, washed in TCM-NBCS with 0.075 M sucrose for 5 min and transferred to TCM-NBCS for 5 min. In one-step dilution, embryos were placed in 400 microl TCM-NBCS containing 0.13 M sucrose. To evaluate in vitro development, embryos warmed by conventional (n=59) or direct (n=58) procedures were cultured for 96 h. Non-vitrified embryos were used as controls (n=20). No significant (P>0.05) differences were observed in the in vitro development of vitrified and non-vitrified embryos. The survival and hatching rates obtained by three-step dilution (84.8 and 71.2%, respectively) and one-step dilution (86.2 and 74.1%, respectively) procedures were not different (P>0.05). The average diameter of expanded blastocysts from each donor was significantly different (P<0.001) among embryo donors. The embryo diameter or the interactions among the factors evaluated did not affect (P>0.05) the embryo survival and hatching of the vitrified/warmed blastocysts. However, the donor of embryos had a significant effect (P<0.001) on these parameters, confirming previous experiments. This experiment shows that porcine embryo vitrification and one-step dilution are promising procedures to be used under field conditions. However, the good results obtained in vitro must be confirmed also by in vivo experiments.  相似文献   

16.
To study the effect of partial removal of intracytoplasmatic lipids from bovine zygotes on their in vitro and in vivo survival, presumptive zygotes were delipidated by micromanipulation and cocultured with Vero cells in B2+10% FCS. Blastocyst rates of delipidated (n=960), sham (centrifuged but not delipidated, n=830) and control embryos (n=950) were 42.1, 42.3 and 39.9% respectively (P > 0.05). Day 7 blastocysts derived from delipidated zygotes had a mean of 123.9 +/-45.6 nuclei compared to 137.5+/-32.9 for control blastocysts (P > 0.05). The full-term development of delipidated blastocysts after single transfer to recipients was similar to that of control IVF blastocysts (41.2% vs 45.4% respectively). To assess the effect of delipidation on the embryo tolerance to freezing/thawing, delipidated (n=73), control (n=67) and sham (n=50) Day 7 blastocysts were frozen in 1.36 M glycerol + 0.25 M sucrose in PBS. After thawing, embryos were cocultured for 72 h with Vero cells in B2+10% FCS. Survival rates at 24 h were not significantly different between groups. However, in the delipidated group, the survival rate after 48 h in culture was significantly higher than in the control group (56.2 vs 39.8, P < 0.02), resulting in a higher hatching rate after 3 days in culture (45.2 vs 22.4, P < 0.02). Pregnancy rates for delipidated and control frozen/thawed embryos were respectively 10.5 and 22.2% (P > 0.05). Electron microscopic observations showed much fewer lipid droplets (and smaller) in delipated blastocysts than in controls. Taken together, our data show that delipidation of one cell stage bovine embryos is compatible with their normal development to term and has a beneficial effect on their tolerance to freezing and thawing at the blastocyst stage. This procedure, however, alters the developmental potential of such blastocysts, suggesting that maternally inherited lipid stores interfere with metabolic recovery after thawing.  相似文献   

17.
We designed and conducted a field trial to obtain accurate pregnancy rates of Day 7 bovine embryos after vitrification in PB1 containing 6.5 M glycerol and 6% BSA (w/v) and one-step dilution in 1 M sucrose compared with controlled slow freezing in 1.5 M glycerol and three-step dilution. Embryos were collected from superovulated donor cows, and Grade 1 and 2 morulae and blastocysts were randomly assigned to each cryopreservation treatment group. Dutch farmers were solicited to participate in the field trial by an advertisement that offered cryopreserved embryos at subsidized cost. Within a period of 11 wk, one of six technicians visited 150 farms. Standard nonsurgical methods were used to transfer a total of 728 cryopreserved embryos. Recipient cows, mainly multiparous and of various breeds, the so-called "bottom-end" of the national herd, received embryos either 6, 7 or 8 d after standing estrus during natural estrous cycles. We compiled a database on 22 factors that may influence establishment of pregnancy in order to check randomization of each factor over cryopreservation treatment groups and embryo transfer technicians and to perform the statistical tests. Overall pregnancy rates were 44.5% (n = 393) for vitrified embryos and 45.1% (n = 335) for slowly frozen embryos. Pregnancy rates were not significantly different (ANOVA, P = 0.79 or Chi- square analysis, P = 0.88). The registered data confirm that all factors were randomly distributed over cryopreservation methods and technicians. Technician was not a significant source of variation in pregnancy rate (analysis of variance, P = 0.79). Although three technicians performed better with the one-step procedure and the other three performed better using the three-step method, the interaction between the technician and cryopreservation method was not significant (Tukey's test for nonadditivity, P = 0.13). Our results indicate that 1) vitrification and one-step dilution can be successfully used in the field without significant reduction in the pregnancy rate and 2) the pregnancy rate obtained using the "bottom-end" of the herd is satisfactory for practical application.  相似文献   

18.
Survival of IVF-derived bovine embryos of different ages and stages of development, produced in 2 different co-culture systems and frozen in 2 different cryoprotectants, was investigated. In vitro-derived bovine embryos (n = 5,525) were utilized to study survival following exposure to cryoprotectants and after freezing. Survival of the frozen embryos was based on blastocyst re-expansion 24 h and hatching 72 h after thawing. There was no difference in survival when embryos were exposed to either glycerol (Gly) or ethylene glycol (EG) for 10 or 40 min with the cryoprotectant diluted with or without freezing. In 2 of 3 experiments in which a comparison was possible, more blastocysts frozen in 1.4 M glycerol than in 1.5 M ethylene glycol survived. Addition of 0.25 M sucrose to 1.5 M ethylene glycol in the freezing solution did not improve embryo survival. More blastocysts frozen on Day 7 of in vitro culture survived than those frozen on Day 6 or Day 8. On Days 6, 7 and 8, embryos in the most advanced stage of development survived better than those at less advanced stages. Post-thaw survival did not differ for embryos produced in co-culture with Buffalo Rat Liver (BRL) cells with either Menezo B2 Medium or Tissue Culture Medium 199 and frozen in 1.4 M glycerol.  相似文献   

19.
Niemann H 《Theriogenology》1985,23(2):369-379
The effects of a one-step addition of 1.4 M glycerol (method A) upon morphological appearance and developmental capacity of frozen/thawed day 7 bovine embryos were investigated and compared to a standard stepwise addition of 1.0 M glycerol (method B). With method A, the percentage of intact embryos (classified as excellent, good and poor) was 95.3% (61 out of 64) without differences between morulae (96.5%) and blastocysts (94.4%). With method B, the percentage of intact embryos was 83.0% (44 out of 53). The percentage was similar for blastocysts (89.2%) and significantly (p < 0.05) lower for morulae (68.8%) when compared to method A. The percentage of embryos with a damaged zona pellucida was considerably increased with method A (26.6%) when compared to method B (13.2%). The proportion of embryos with excluded blastomeres was similar in both methods (21.9% method A, 17.0% method B). With method A, pregnancy rates after nonsurgical transfer were 51.0% (25 out of 49) and were better than with method B (40.5%; 15 out of 37). Embryos with a damaged zona pellucida resulted in a high pregnancy rate of 66.7% (8 out of 12). A pregnancy rate of 52.9% (10 out of 17) was obtained with embryos showing some excluded blastomeres. Thus, a one-step addition of 1.4 M glycerol facilitates and accelerates the process of embryo cryopreservation and is compatible with high pregnancy rates. Damage of the zona pellucida does not impair further development of frozen/thawed bovine embryos provided blastomeres are intact.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号