首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Mortality and growth of self and outcross families of three wind-pollinated, mixed-mating, long-lived conifers, Douglas-fir (Pseudotsuga menziesii), ponderosa pine (Pinus ponderosa), and noble fir (Abies procera) were followed from outplanting to age 26 (25 for noble fir) in spaced plantings at a common test site. Response to inbreeding differed greatly among species over time and in all regards. Only Douglas-fir and noble fir will be contrasted here, because ponderosa pine usually was intermediate to the other two in its response to inbreeding. In earlier reports, compared to noble fir Douglas-fir had a higher rate of primary selfing and larger inbreeding depression in seed set. Douglas-fir continued to have higher inbreeding depression in nursery and early field survival. The species differed in time courses of inbreeding depression in height and in allocation of growth due to crowding. Between ages 6 and 12, the relative elongation rate (dm · dm?1 · yr?1) of Douglas-fir was significantly greater in the selfs than in the outcrosses. The response was not observed in noble fir. At final measurement, inbreeding depression in diameter relative to inbreeding depression in height was greater in Douglas-fir than in noble fir. At final measurement inbreeding depression in height was inversely related to inbreeding depression in survival. Cumulative inbreeding depressions from time of fertilization to final measurement were 0.98, 0.94, and 0.83 for Douglas-fir, ponderosa pine, and noble fir, respectively, which indicates that selfs will not contribute to the mature, reproductive populations.  相似文献   

2.
3.
4.
Aim Bark beetle outbreaks have recently affected extensive areas of western North American forests, and factors explaining landscape patterns of tree mortality are poorly understood. The objective of this study was to determine the relative importance of stand structure, topography, soil characteristics, landscape context (the characteristics of the landscape surrounding the focal stand) and beetle pressure (the abundance of local beetle population eruptions around the focal stand a few years before the outbreak) to explain landscape patterns of tree mortality during outbreaks of three species: the mountain pine beetle, which attacks lodgepole pine and whitebark pine; the spruce beetle, which feeds on Engelmann spruce; and the Douglas‐fir beetle, which attacks Douglas‐fir. A second objective was to identify common variables that explain tree mortality among beetle–tree host pairings during outbreaks. Location Greater Yellowstone ecosystem, Wyoming, USA. Methods We used field surveys to quantify stand structure, soil characteristics and topography at the plot level in susceptible stands of each forest type showing different severities of infestation (0–98% mortality; n= 129 plots). We then used forest cover and beetle infestation maps derived from remote sensing to develop landscape context and beetle pressure metrics at different spatial scales. Plot‐level and landscape‐level variables were used to explain outbreak severity. Results Engelmann spruce and Douglas‐fir mortality were best predicted using landscape‐level variables alone. Lodgepole pine mortality was best predicted by both landscape‐level and plot‐level variables. Whitebark pine mortality was best – although poorly – predicted by plot‐level variables. Models including landscape context and beetle pressure were much better at predicting outbreak severity than models that only included plot‐level measures, except for whitebark pine. Main conclusions Landscape‐level variables, particularly beetle pressure, were the most consistent predictors of subsequent outbreak severity within susceptible stands of all four host species. These results may help forest managers identify vulnerable locations during ongoing outbreaks.  相似文献   

5.
    
Question: What is the relative importance of low‐ and high‐severity fires in shaping forest structure across the range of Pinus ponderosa in northern Colorado? Location: Colorado Front Range, USA. Methods: To assess severities of historic fires, 24 sites were sampled across an elevation range of 1800 to 2800 m for fire scars, tree establishment dates, tree mortality, and changes in tree‐ring growth. Results: Below 1950 m, the high number of fire scars, scarcity of large post‐fire cohorts, and lack of synchronous tree mortality or growth releases, indicate that historic fires were of low severity. In contrast, above 2200 m, fire severity was greater but frequency of widespread fires was substantially less. At 18 sites above 1950 m, 34 to 80% of the live trees date from establishment associated with the last moderate‐ to high‐severity fire. In these 18 sites, only 2 to 52% of the living trees pre‐date these fires suggesting that fire severities prior to any effects of fire suppression were sufficient to kill many trees. Conclusions: These findings for the P. ponderosa zone above ca. 2200 m (i.e. most of the zone) contradict the widespread perception that fire exclusion, at least at the stand scale of tens to hundreds of hectares, has resulted in unnaturally high stand densities or in an atypical abundance of shade‐tolerant species. At relatively mesic sites (e.g. higher elevation, north‐facing), the historic fire regime consisted of a variable‐severity regime, but forest structure was shaped primarily by severe fires rather than by surface fires.  相似文献   

6.
7.
We tested the hypothesis that the stable carbon isotope signature of ecosystem respiration (δ13CR) was regulated by canopy conductance (Gc) using weekly Keeling plots (n=51) from a semiarid old‐growth ponderosa pine (Pinus ponderosa) forest in Oregon, USA. For a comparison of forests in two contrasting climates we also evaluated trends in δ13CR from a wet 20‐year‐old Douglas‐fir (Pseudotsuga menziesii) plantation located near the Pacific Ocean. Intraannual variability in δ13CR was greater than 8.0‰ at both sites, was highest during autumn, winter, and spring when rainfall was abundant, and lowest during summer drought. The δ13CR of the dry pine forest was consistently more positive than the wetter Douglas‐fir forest (mean annual δ13CR: ?25.41‰ vs. ?26.23‰, respectively, P=0.07). At the Douglas‐fir forest, δ13CR–climate relationships were consistent with predictions based on stomatal regulation of carbon isotope discrimination (Δ). Soil water content (SWC) and vapor pressure deficit (vpd) were the most important factors governing δ13CR in this forest throughout the year. In contrast, δ13CR at the pine forest was relatively insensitive to SWC or vpd, and exhibited a smaller drought‐related enrichment (~2‰) than the enrichment observed during drought at the Douglas‐fir forest (~5‰). Groundwater access at the pine forest may buffer canopy–gas exchange from drought. Despite this potential buffering, δ13CR at the pine forest was significantly but weakly related to canopy conductance (Gc), suggesting that δ13CR remains coupled to canopy–gas exchange despite groundwater access. During drought, δ13CR was strongly correlated with soil temperature at both forests. The hypothesis that canopy‐level physiology is a critical regulator of δ13CR was supported; however, belowground respiration may become more important during rain‐free periods.  相似文献   

8.
The ectomycorrhizal fungal associations of Douglas fir ( Pseudotsuga menziesii D. Don) and bishop pine ( Pinus muricata D. Don) were investigated in a mixed forest stand. We identified fungi directly from field-collected ectomycorrhizal (ECM) root tips using PCR-based methods. Sixteen species of fungi were found, of which twelve associated with both hosts. Rhizopogon parksii Smith was specific to Douglas fir. Three other species colonized only one of the hosts, but were too infrequent to draw conclusions about specificity. Seventy-four percent of the biomass of ECM root tips sampled in the stand were colonized by members of the Thelephoraceae and Russulaceae. All 12 species of fungi that associated with both tree species did so within a 10×40 cm soil volume, suggesting that individual fungal genotypes linked the putatively competing tree hosts.  相似文献   

9.
10.
11.
It was hypothesized that high CO2 availability would increase monoterpene emission to the atmosphere. This hypothesis was based on resource allocation theory which predicts increased production of plant secondary compounds when carbon is in excess of that required for growth. Monoterpene emission rates were measured from needles of (a) Ponderosa pine grown at different CO2 concentrations and soil nitrogen levels, and (b) Douglas fir grown at different CO2 concentrations. Ponderosa pine grown at 700 μmol mol–1 CO2 exhibited increased photosynthetic rates and needle starch to nitrogen (N) ratios when compared to trees grown at 350 μmol mol–1 CO2. Nitrogen availability had no consistent effect on photosynthesis. Douglas fir grown at 550 μmol mol–1 CO2 exhibited increased photosynthetic rates as compared to growth at 350 μmol mol–1 CO2 in old, but not young needles, and there was no influence on the starch/N ratio. In neither species was there a significant effect of elevated growth CO2 on needle monoterpene concentration or emission rate. The influence of climate warming and leaf area index (LAI) on monoterpene emission were also investigated. Douglas fir grown at elevated CO2 plus a 4 °C increase in growth temperature exhibited no change in needle monoterpene concentration, despite a predicted 50% increase in emission rate. At elevated CO2 concentration the LAI increased in Ponderosa pine, but not Douglas fir. The combination of increased LAI and climate warming are predicted to cause an 80% increase in monoterpene emissions from Ponderosa pine forests and a 50% increase in emissions from Douglas fir forests. This study demonstrates that although growth at elevated CO2 may not affect the rate of monoterpene emission per unit biomass, the effect of elevated CO2 on LAI, and the effect of climate warming on monoterpene biosynthesis and volatilization, could increase canopy monoterpene emission rate.  相似文献   

12.
 Isolates from two species of Morchella were tested for ability to form mycorrhizae in pure culture synthesis with Arbutus menziesii, Larix occidentalis, Pinus contorta, Pinus ponderosa, andPseudotsuga menziesii. Ectomycorrhizal structures (mantle and Hartig net) formed with the four species of the Pinaceae but not with A. menziesii. Results are compared to previous studies on morel mycorrhizae and discussed in an ecological context. Accepted: 23 October 1999  相似文献   

13.
A pattern recognition system was developed to classify Douglas fir somatic embryos by employing an image analysis system and two neural network based classifiers. The contour of embryo images was segmented, digitalized and converted to numerical values after the discrete and fast Fourier transformation. These values, or Fourier features, along with some other shape factors, were used for embryo classification. The pattern recognition system used a hierarchical decision tree to classify Douglas fir embryos into three normal and one abnormal embryo classes. An accuracy of greater than 80% was achieved for normal embryos. This system provides an objective and efficient method of classifying embryos of Douglas fir. It will be a useful tool for kinetic studies and process optimization of conifer somatic embryogenesis.  相似文献   

14.
Although hydraulic redistribution of soil water (HR) by roots is a widespread phenomenon, the processes governing spatial and temporal patterns of HR are not well understood. We incorporated soil/plant biophysical properties into a simple model based on Darcy's law to predict seasonal trajectories of HR. We investigated the spatial and temporal variability of HR across multiple years in two old-growth coniferous forest ecosystems with contrasting species and moisture regimes by measurement of soil water content (theta) and water potential (Psi) throughout the upper soil profile, root distribution and conductivity, and relevant climate variables. Large HR variability within sites (0-0.5 mm d(-1)) was attributed to spatial patterns of roots, soil moisture and depletion. HR accounted for 3-9% of estimated total site water depletion seasonally, peaking at 0.16 mm d(-1) (ponderosa pine; Pinus ponderosa) or 0.30 mm d(-1) (Douglas-fir; Pseudotsuga menziesii), then declining as modeled pathway conductance dropped with increasing root cavitation. While HR can vary tremendously within a site, among years and among ecosystems, this variability can be explained by natural variability in Psi gradients and seasonal courses of root conductivity.  相似文献   

15.
Purification and properties of glutamine synthetase from Douglas fir roots   总被引:2,自引:0,他引:2  
Glutamine synthetase (GS. EC 6.3.1.2) was purified to apparent electrophoretic homogeneity from roots of Pseudotsuga menziesii (Mirb) Franco by a three-step procedure involving diethylaminoethyl (DEAE)-Trisacryl chromatography, affinity chromatography on Matrex Gel Red A. and preparative polyacrylamide gel electrophoresis. The enzyme was purified 40-fold with a 16% recovery. The native enzyme had a molecular mass of 460 ± 5 kDa as estimated by gel filtration, interpolation of the Ferguson plots and non-denaturing gradient-PAGE. It was composed of two different subunits of 54 and 64 kDa. Affinity constants for glutamate (Glu), glutamine (Gln), ATP and ADP were 2.6, 10.5, 0.5 and 0.083 m M . respectively. The enzyme exhibited a negative cooperativity for ammonium (Hill number of 0.7) with two Km values which were 11 and 75 μ M in the presence of ammonium concentrations lower and higher than 1.3 m M , respectively. Glycine and ADP appeared as potential inhibitors of the GS activity. The optimum pH values were 7.2 and 7.6 for the transferase and the biosynthetic assays, respectively. The enzyme lost 30% of its activity within 25 days of storage at 4°C. The optimum temperatures of activity were 40°C and 45°C for the transferase and bio-synthetic activities, respectively.  相似文献   

16.
 Seedlings of Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, and ponderosa pine, Pinus ponderosa Dougl. ex Laws., were grown in a controlled environment and fertilized with nutrient solutions containing 150 ppm (+N), or 0 ppm nitrogen (−N). These treatments greatly altered seedling growth, and the concentrations of N and carbohydrates in their tissues. Metabolically active tissues, such as roots, incubated with a limited supply of O2 became hypoxic faster and synthesized more ethanol than less active tissues, such as needles. All tissues that were incubated for 4 h in N2 synthesized ethanol. Needles incubated in N2 and light had much lower quantities of ethanol than needles in N2 and dark, suggesting that O2 from photosynthetsis limited internal anoxia. Most tissues from +N seedlings synthesized greater quantities of ethanol in N2 anoxia than tissues from −N seedlings, probably because they were able to produce more enzymes with a greater availability of N. However, this increase in ethanol synthesis between N treatments was most pronounced in the phloem. Ethanol and soluble sugar concentrations were negatively related in needles and positively related in roots of N+ seedlings, but not −N seedlings. Starch concentrations had no effect on the amount of ethanol produced by any tissue. Regardless of N treatments, all tissues from ponderosa pine produced more N2-induced ethanol than Douglas-fir, in part because its tissues contained different concentrations of soluble sugars and N as a consequence of phenological differences between the species. However, ponderosa pine tissues may also maintain greater quantities of anaerobic enzymes, or their isozymes than Douglas-fir. Received: 22 February 1998 / Accepted 23 June 1998  相似文献   

17.
Douglas fir (Pseudotsuga menziesii) variety glauca (DFG) but not the variety viridis (DFV) showed symptoms of manganese (Mn) toxicity in some field sites. We hypothesized that these two varieties differed in Mn metabolism. To test this hypothesis, biomass partitioning, Mn concentrations, subcellular localization and 54Mn-transport were investigated. Total Mn uptake was three-times higher in DFG than in DFV. DFV retained > 90% of 54Mn in roots, whereas > 60% was transported to the shoot in DFG. The epidermis was probably the most efficient Mn barrier since DFV contained lower Mn concentrations in cortical cells and vacuoles of roots than DFG. In both varieties, xylem loading was restricted and phloem transport was low. However, sieve cells still contained high Mn concentrations. DFV displayed higher biomass production and higher shoot : root ratios than DFG. Our results clearly show that both varieties of Douglas fir differ significantly in Mn-uptake and allocation patterns rendering DFG more vulnerable to Mn toxicity.  相似文献   

18.
Tree root respiration utilizes a major portion of the primary production in forests and is an important process in the global carbon cycle. Because of the lack of ecologically relevant methods, tree root respiration in situ is much less studied compared with above-ground processes such as photosynthesis and leaf respiration. This study introduces a new (13)C natural tracer method for measuring tree root respiration in situ. The method partitions tree root respiration from soil respiration in buried root chambers. Rooting media substantially influenced root respiration rates. Measured in three media, the fine root respiration rates of longleaf pine were 0.78, 0.27 and 0.18 mg CO(2) carbon mg(-1) root nitrogen d(-1) at 25 degrees C in the native soil, tallgrass prairie soil, and sand-vermiculite mixture, respectively. Compared with the root excision method, the root respiration rate of longleaf pine measured by the field chamber method was 18% higher when using the native soil as rooting medium, was similar in the prairie soil, but was 42% lower if in the sand-vermiculite medium. This natural tracer method allows the use of an appropriate rooting medium and is capable of measuring root respiration nondestructively in natural forest conditions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号