首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The core of the photosynthetic reaction center from the purple non-sulfur bacterium Rhodobacter sphaeroides is a quasi-symmetric heterodimer, providing two potential pathways for transmembrane electron transfer. Past measurements have demonstrated that only one of the two pathways (the A-side) is used to any significant extent upon excitation with red or near-infrared light. Here, it is shown that excitation with blue light into the Soret band of the reaction center gives rise to electron transfer along the alternate or B-side pathway, resulting in a charge-separated state involving the anion of the B-side bacteriopheophytin. This electron transfer is much faster than normal A-side transfer, apparently occurring within a few hundred femtoseconds. At low temperatures, the B-side charge-separated state is stable for at least 1 ns, but at room temperature, the B-side bacteriopheophytin anion is short-lived, decaying within approximately 15 ps. One possible physiological role for B-side electron transfer is photoprotection, rapidly quenching higher excited states of the reaction center.  相似文献   

2.
E G Alexov  M R Gunner 《Biochemistry》1999,38(26):8253-8270
Reaction centers from Rhodobacter sphaeroides were subjected to Monte Carlo sampling to determine the Boltzmann distribution of side-chain ionization states and positions and buried water orientation and site occupancy. Changing the oxidation states of the bacteriochlorophyll dimer electron donor (P) and primary (QA) and secondary (QB) quinone electron acceptors allows preparation of the ground (all neutral), P+QA-, P+QB-, P0QA-, and P0QB- states. The calculated proton binding going from ground to other oxidation states and the free energy of electron transfer from QA-QB to form QAQB- (DeltaGAB) compare well with experiment from pH 5 to pH 11. At pH 7 DeltaGAB is measured as -65 meV and calculated to be -80 meV. With fixed protein positions as in standard electrostatic calculations, DeltaGAB is +170 meV. At pH 7 approximately 0.2 H+/protein is bound on QA reduction. On electron transfer to QB there is little additional proton uptake, but shifts in side chain protonation and position occur throughout the protein. Waters in channels leading from QB to the surface change site occupancy and orientation. A cluster of acids (GluL212, AspL210, and L213) and SerL223 near QB play important roles. A simplified view shows this cluster with a single negative charge (on AspL213 with a hydrogen bond to SerL233) in the ground state. In the QB- state the cluster still has one negative charge, now on the more distant AspL210. AspL213 and SerL223 move so SerL223 can hydrogen bond to QB-. These rearrangements plus other changes throughout the protein make the reaction energetically favorable.  相似文献   

3.
The arrangement and the electron transfer are studied for photosynthetic reaction centers (RC) of Rhodopseudomonas sphaeroides reconstituted into phospholipid vesicles. Freeze-etch electron micrographs of phase separated mixed vesicles reveal an RC enrichment in the phase containing the acidic lipid serine. It is demonstrated that the electron transfer from cytochrome c to RC involves a two-dimensional diffusion of the membrane bound electron donor with diffusion coefficients (D approximately 10(-9) cm2/sec) characteristic for membrane proteins.  相似文献   

4.
Breton J 《Biochemistry》2004,43(12):3318-3326
Photosynthesis transforms light into chemical energy by coupling electron transfer to proton uptake at the quinone Q(B). The possibility of initiating this process with a brief pulse of light and the known X-ray structure makes the photosynthetic bacterial reaction center a paradigm for studying coupled electron-proton transfer in biology. It has been established that electron transfer from the primary quinone Q(A) to Q(B) is gated by a protein conformational change. On the basis of a dramatic difference in the location of Q(B) in structures derived from crystals cooled to 90 K either under illumination or in the dark, a functional model for the gating mechanism was proposed whereby neutral Q(B) moves 4.5 A before receiving the electron from Q(A)(-) [Stowell, M. H. B., McPhillips, T. M., Rees, D. C., Soltis, S. M., Abresch, E., and Feher, G. (1997) Science 276, 812-816]. Isotope-edited FTIR difference spectroscopy of Q(B) photoreduction at 290 and 85 K is used to investigate whether Q(B) moves upon reduction. We show that the specific interactions of the carbonyl groups of Q(B) and Q(B)(-) with the protein at a single binding site remain identical at both temperatures. Therefore, the different locations of Q(B) reported in many X-ray crystal structures probably are unrelated to functional electron transfer from Q(A)(-) to Q(B).  相似文献   

5.
Light-induced forward electron transfer in the bacterial photosynthetic reaction center from Rhodobacter sphaeroides was investigated by time-resolved infrared spectroscopy. Using a highly sensitive kinetic photometer based on a tunable IR diode laser source [M?ntele, W., Hienerwadel, R., Lenz, F., Riedel, W. J., Grisar, R., & Tacke, M. (1990a) Spectrosc. Int. 2, 29-35], molecular processes concomitant with electron-transfer reactions were studied in the microsecond-to-second time scale. Infrared (IR) signals in the 1780-1430-cm-1 spectral region, appearing within the instrument time resolution of about 0.5 microseconds, could be assigned to molecular changes of the primary electron donor upon formation of a radical cation and to modes of the primary quinone electron acceptor QA and its environment upon formation of QA-. These IR signals are consistent with steady-state FTIR difference spectra of the P+Q- formation [M?ntele, W., Nabedryk, E., Tavitian, B. A., Kreutz, W., & Breton, J. (1985) FEBS Lett. 187, 227-232; M?ntele, W., Wollenweber, A., Nabedryk, E., & Breton, J. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 8468-8472; Nabedryk, E., Bagley, K. A., Thibodeau, D. L., Bauscher, M., M?ntele, W., & Breton, J. (1990) FEBS Lett. 266, 59-62] and with time-resolved FTIR studies [Thibodeau, D. L., Nabedryk, E., Hienerwadel, R., Lenz, F., M?ntele, W., & Breton, J. (1990) Biochim. Biophys. Acta 1020, 253-259]. At given wavenumbers, kinetic components with a half-time of approximately 120 microseconds were observed and attributed to QA----QB electron transfer. The time-resolved IR signals, in contrast to steady-state experiments where full protein relaxation after electron transfer can occur, allow us to follow directly the modes of QA and QB and their protein environment under conditions of forward electron transfer. Apart from signals attributed to the primary electron donor, signals are proposed to arise not only from the C = O and C = C vibrational modes of the neutral quinones and from the C-O and C-C vibrations of their semiquinone anion form but also from amino acid groups forming their binding sites. Some of the signals appearing with the instrument rise time as well as the transient 120-microseconds signals are interpreted in terms of binding and interaction of the primary and secondary quinone electron acceptor in the Rb. sphaeroides reaction center and of the conformational changes in their binding site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for the primary electron transfer reaction through an effect on the reduction potential of the primary donor. A lowering of the redox potential of the primary donor due to the presence of the core antenna is consistently observed in a series of reaction center mutants in which the reduction potential of the primary donor was varied over a 130 mV range. Estimates of the magnitude of the change in driving force for charge separation from time-resolved delayed fluorescence measurements in the mutant reaction centers suggest that the mutations exert their effect on the driving force largely through an influence on the redox properties of the primary donor. The results demonstrate that the energetics of light-driven electron transfer in reaction centers are sensitive to the environment of the complex, and provide indirect evidence that the kinetics of electron transfer are modulated by the presence of the LH1 antenna complexes that surround the reaction center in the natural membrane.  相似文献   

7.
Photosynthetic reaction centers convert light energy into chemical energy in a series of transmembrane electron transfer reactions, each with near 100% yield. The structures of reaction centers reveal two symmetry-related branches of cofactors (denoted A and B) that are functionally asymmetric; purple bacterial reaction centers use the A pathway exclusively. Previously, site-specific mutagenesis has yielded reaction centers capable of transmembrane charge separation solely via the B branch cofactors, but the best overall electron transfer yields are still low. In an attempt to better realize the architectural and energetic factors that underlie the directionality and yields of electron transfer, sites within the protein-cofactor complex were targeted in a directed molecular evolution strategy that implements streamlined mutagenesis and high throughput spectroscopic screening. The polycistronic approach enables efficient construction and expression of a large number of variants of a heteroligomeric complex that has two intimately regulated subunits with high sequence similarity, common features of many prokaryotic and eukaryotic transmembrane protein assemblies. The strategy has succeeded in the discovery of several mutant reaction centers with increased efficiency of the B pathway; they carry multiple substitutions that have not been explored or linked using traditional approaches. This work expands our understanding of the structure-function relationships that dictate the efficiency of biological energy-conversion reactions, concepts that will aid the design of bio-inspired assemblies capable of both efficient charge separation and charge stabilization.  相似文献   

8.
9.
Numerical calculations of the free energy of the first electron transfer in genetically modified reaction centers from Rhodobacter (Rb.) sphaeroides and Rb. capsulatus were carried out from pH 5 to 11. The multiconformation continuum electrostatics (MCCE) method allows side chain, ligand, and water reorientation to be embedded in the calculations of the Boltzmann distribution of cofactor and amino acid ionization states. The mutation sites whose effects have been modeled are L212 and L213 (the L polypeptide) and two in the M polypeptide, M43(44) and M231(233) in Rb. capsulatus (Rb. sphaeroides). The results of the calculations were compared to the experimental data, and very good agreement was found especially at neutral pH. Each mutation removes or introduces ionizable residues, but the protein maintains a net charge close to that in native RCs through ionization changes in nearby residues. This reduces the effect of mutation and makes the changes in state free energy smaller than would be found in a rigid protein. The state energy of QA-QB and QAQB- states have contributions from interactions among the residues as well as with the quinone which is ionized. For example, removing L213Asp, located in the QB pocket, predominantly changes the free energy of the QA-QB state, where the Asp is ionized in native RCs rather than the QAQB- state, where it is neutral. Side chain, hydroxyl, and water rearrangements due to each of the mutations have also been calculated showing water occupancy changes during the QA- to QB electron transfer.  相似文献   

10.
Time-resolved visible pump/mid-infrared (mid-IR) probe spectroscopy in the region between 1600 and 1800 cm−1 was used to investigate electron transfer, radical pair relaxation, and protein relaxation at room temperature in the Rhodobacter sphaeroides reaction center (RC). Wild-type RCs both with and without the quinone electron acceptor QA, were excited at 600 nm (nonselective excitation), 800 nm (direct excitation of the monomeric bacteriochlorophyll (BChl) cofactors), and 860 nm (direct excitation of the dimer of primary donor (P) BChls (PL/PM)). The region between 1600 and 1800 cm−1 encompasses absorption changes associated with carbonyl (CO) stretch vibrational modes of the cofactors and protein. After photoexcitation of the RC the primary electron donor P excited singlet state (P*) decayed on a timescale of 3.7 ps to the state (where BL is the accessory BChl electron acceptor). This is the first report of the mid-IR absorption spectrum of ; the difference spectrum indicates that the 9-keto CO stretch of BL is located around 1670-1680 cm−1. After subsequent electron transfer to the bacteriopheophytin HL in ∼1 ps, the state was formed. A sequential analysis and simultaneous target analysis of the data showed a relaxation of the radical pair on the ∼20 ps timescale, accompanied by a change in the relative ratio of the and bands and by a minor change in the band amplitude at 1640 cm−1 that may be tentatively ascribed to the response of an amide CO to the radical pair formation. We conclude that the drop in free energy associated with the relaxation of , is due to an increased localization of the electron hole on the PL half of the dimer and a further consequence is a reduction in the electrical field causing the Stark shift of one or more amide CO oscillators.  相似文献   

11.
Photosynthesis Research - This minireview is written in honor of Vladimir A. Shuvalov, a pioneer in the area of primary photochemistry of both oxygenic and anoxygenic photosyntheses (See a News...  相似文献   

12.
《BBA》1985,810(2):132-139
The photochemistry and electron-transfer activities of sodium-borohydride-treated reaction centers from the purple photosynthetic bacterium Rhodopseudomonas sphaeroides R26 have been investigated by both milliand picosecond absorption techniques. Separation from the treated reaction center of the reduction product, apparently a reduced form of one of the two molecules of bacteriochlorophyll contributing to the 800 nm ground-state absorption band, is also reported. In the near-infrared region, differences between treated and untreated reaction centers are observed in both milli- and picosecond light-induced difference spectra. However, borohydride-treated reaction centers exhibit photochemistry and electron transfer which are indistinguishable from those observed in untreated reaction centers. These results indicate that normal activity occurs in reaction centers that contain both molecules of bacteriopheophytin, but only three of the usual four molecules of bacteriochlorophyll.  相似文献   

13.
The bacterial reaction center couples light-induced electron transfer to proton pumping across the membrane by reactions of a quinone molecule Q(B) that binds two electrons and two protons at the active site. This article reviews recent experimental work on the mechanism of the proton-coupled electron transfer and the pathways for proton transfer to the Q(B) site. The mechanism of the first electron transfer, k((1))(AB), Q(-)(A)Q(B)-->Q(A)Q(-)(B), was shown to be rate limited by conformational gating. The mechanism of the second electron transfer, k((2))(AB), was shown to involve rapid reversible proton transfer to the semiquinone followed by rate-limiting electron transfer, H(+)+Q(-)(A)Q(-)(B) ifQ(-)(A)Q(B)H-->Q(A)(Q(B)H)(-). The pathways for transfer of the first and second protons were elucidated by high-resolution X-ray crystallography as well as kinetic studies showing changes in the rate of proton transfer due to site directed mutations and metal ion binding.  相似文献   

14.
From the crystal structures of reaction centers (RCs) from purple photosynthetic bacteria, two pathways for electron transfer (ET) are apparent but only one pathway (the A side) operates in the native protein-cofactor complex. Partial activation of the B-side pathway has unveiled the true inefficiencies of ET processes on that side in comparison to analogous reactions on the A side. Of significance are the relative rate constants for forward ET and the competing charge recombination reactions. On the B side, these rate constants are nearly equal for the secondary charge-separation step (ET from bacteriopheophytin to quinone), relegating the yield of this process to < 50%. Herein we report efforts to optimize this step. In surveying all possible residues at position 131 in the M subunit, we discovered that when glutamic acid replaces the native valine the efficiency of the secondary ET is nearly two-fold higher than in the wild-type RC. The positive effect of M131 Glu is likely due to formation of a hydrogen bond with the ring V keto group of the B-side bacteriopheophytin leading to stabilization of the charge-separated state involving this cofactor. This change slows charge recombination by roughly a factor of two and affords the improved yield of the desired forward ET to the B-side quinone terminal acceptor.  相似文献   

15.
Structural aspects of photosynthetic reaction centers in bacteria and plants are discussed in relation with the ability of these structures to perform a photoinduced electron transfer from one side of the membrane to the other. A comparison is made with recently synthesized artificial models. Functional similarities between the acceptor sides of bacterial and of Photosystem-II centers are utilized to hypothesize on their structure.This review corresponds to a lecture delivered at the 3rd European Bioenergetics Conference, Hannover, September 1984.  相似文献   

16.
The photosynthetic reaction center (RC) from purple bacteria converts light into chemical energy. Although the RC shows two nearly structurally symmetric branches, A and B, light-induced electron transfer in the native RC occurs almost exclusively along the A-branch to a primary quinone electron acceptor Q(A). Subsequent electron and proton transfer to a mobile quinone molecule Q(B) converts it to a quinol, Q(B)H(2). We report the construction and characterization of a series of mutants in Rhodobacter sphaeroides designed to reduce Q(B) via the B-branch. The quantum efficiency to Q(B) via the B-branch Phi(B) ranged from 0.4% in an RC containing the single mutation Ala-M260 --> Trp to 5% in a quintuple mutant which includes in addition three mutations to inhibit transfer along the A-branch (Gly-M203 --> Asp, Tyr-M210 --> Phe, Leu-M214 --> His) and one to promote transfer along the B-branch (Phe-L181 --> Tyr). Comparing the value of 0.4% for Phi(B) obtained in the AW(M260) mutant, which lacks Q(A), to the 100% quantum efficiency for Phi(A) along the A-branch in the native RC, we obtain a ratio for A-branch to B-branch electron transfer of 250:1. We determined the structure of the most effective (quintuple) mutant RC at 2.25 A (R-factor = 19.6%). The Q(A) site did not contain a quinone but was occupied by the side chain of Trp-M260 and a Cl(-). In this structure a nonfunctional quinone was found to occupy a new site near M258 and M268. The implications of this work to trap intermediate states are discussed.  相似文献   

17.
18.
Purple, photosynthetic reaction centers from Rhodobacter sphaeroides bacteria use ubiquinone (UQ10) as both primary (QA) and secondary (QB) electron acceptors. Many quinones reconstitute QA function, while a few will act as QB. Nine quinones were tested for their ability to bind and reconstitute QA and QB functions. Only ubiquinone (UQ) reconstitutes both functions in the same protein. The affinities of the non-native quinones for the QB site were determined by a competitive inhibition assay. The affinities of benzoquinones, naphthoquinone (NQ), and 2-methyl-NQ for the QB site are 7 ± 3 times weaker than that at QA site. However, di-ortho-substituted NQs and anthraquinone bind tightly to the QA site (K d ≤ 200 nM), and ≥1,000 times more weakly to the QB site, perhaps setting a limit on the size of the site. With a low-potential electron donor, 2-methyl, 3-dimethylamino-1,4-NQ, (Me-diMeAm-NQ) at QA, QB reduction is 260 meV, more favorable than with UQ as QA. Electron transfer from Me-diMeAm-NQ at the QA site to NQ at the QB site can be detected. In the QB site, the NQ semiquinone is estimated to be ≈60–100 meV higher in energy than the UQ semiquinone, while in the QA site, the semiquinone energy level is similar or lower with NQ than with UQ. Thus, the NQ semiquinone is more stable in the QA than in the QB site. In contrast, the native UQ semiquinone is ≈60 meV lower in energy in the QB than in the QA site, stabilizing forward electron transfer from QA to QB.  相似文献   

19.
The nuclear wavepacket formed by 20-fs excitation on the P* potential energy surface in native and mutant (YM210W and YM210L) reaction centers of Rhodobacter (Rb.) sphaeroides and Chloroflexus (C.) aurantiacus RCs was found to be reversibly transferred to the P+BA- surface at 120, 380, and 640-fs delays (monitored by measurements of BA- absorption at 1020-1028 nm). The reaction centers of YM210W(L) mutant show the most simple pattern of fs oscillations with a period of 230 fs in stimulated emission from P* and in the product P+BA-. The mechanisms of the electron transfer pathway between P* and BA and of the stabilization of the state P+BA- in bacterial reaction centers are discussed.  相似文献   

20.
The thermodynamic properties of electron transfer in biological systems are far less known in comparison with that of their kinetics. In this paper the enthalpy and entropy of electron transfer in the purified photosystem I trimer complexes from Synechocystis sp. PCC 6803 have been studied, using pulsed time-resolved photoacoustics on the 1 micros time scale. The volume contraction of reaction centers of photosystem I, which results directly from the light-induced charge separation forming P(700+F(A)/F(B-) from the excited-state P700*, is determined to be -26 +/- 2 A3. The enthalpy of the above electron-transfer reaction is found to be -0.39 +/- 0.1 eV. Photoacoustic estimation of the quantum yield of photochemistry in the purified photosystem I trimer complex showed it to be close to unity. Taking the free energy of the above reaction as the difference of their redox potentials in situ allows us to calculate an apparent entropy change (TDeltaS) of +0.35 +/- 0.1 eV. These values of DeltaV and TDeltaS are similar to those of bacterial reaction centers. The unexpected sign of entropy of electron transfer is tentatively assigned, as in the bacterial case, to the escape of counterions from the surface of the particles. The apparent entropy change of electron transfer in biological system is significant and cannot be neglected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号