首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During animal development, organs grow to a fixed size and shape. Organ development typically begins with a rapid growth phase followed by a gradual decline in growth rate as the organ matures, but the regulation of either stage of growth remains unclear. The Wnt/Wingless (Wg) proteins are critical for patterning most animal organs, have diverse effects on development and have been proposed to promote organ growth. Here we report that contrary to this view, Wg activity actually constrains wing growth during Drosophila melanogaster wing development. In addition, we demonstrate that Wg is required for wing cell survival, particularly during the rapid growth phase of wing development. We propose that the cell-survival- and growth-constraining activities of Wg function to sculpt and delimit final wing size as part of its overall patterning programme.  相似文献   

2.
The cellular events that govern patterning during animal development must be precisely regulated. This is achieved by extrinsic factors and through the action of both positive and negative feedback loops. Wnt/Wg signals are crucial across species in many developmental patterning events. We report that Drosophila nemo (nmo) acts as an intracellular feedback inhibitor of Wingless (Wg) and that it is a novel Wg target gene. Nemo antagonizes the activity of the Wg signal, as evidenced by the finding that reduction of nmo rescues the phenotypic defects induced by misexpression of various Wg pathway components. In addition, the activation of Wg-dependent gene expression is suppressed in wing discs ectopically expressing nmo and enhanced cell autonomously in nmo mutant clones. We find that nmo itself is a target of Wg signaling in the imaginal wing disc. nmo expression is induced upon high levels of Wg signaling and can be inhibited by interfering with Wg signaling. Finally, we observe alterations in Arm stabilization upon modulation of Nemo. These observations suggest that the patterning mechanism governed by Wg involves a negative feedback circuit in which Wg induces expression of its own antagonist Nemo.  相似文献   

3.
During Drosophila wing development, Hedgehog (Hh) signalling is required to pattern the imaginal disc epithelium along the anterior-posterior (AP) axis. The Notch (N) and Wingless (Wg) signalling pathways organise the dorsal-ventral (DV) axis, including patterning along the presumptive wing margin. Here, we describe a functional hierarchy of these signalling pathways that highlights the importance of competing influences of Hh, N, and Wg in establishing gene expression domains. Investigation of the modulation of Hh target gene expression along the DV axis of the wing disc revealed that collier/knot (col/kn), patched (ptc), and decapentaplegic (dpp) are repressed at the DV boundary by N signalling. Attenuation of Hh signalling activity caused by loss of fused function results in a striking down-regulation of col, ptc, and engrailed (en) symmetrically about the DV boundary. We show that this down-regulation depends on activity of the canonical Wg signalling pathway. We propose that modulation of the response of cells to Hh along the future proximodistal (PD) axis is necessary for generation of the correctly patterned three-dimensional adult wing. Our findings suggest a paradigm of repression of the Hh response by N and/or Wnt signalling that may be applicable to signal integration in vertebrate appendages.  相似文献   

4.
The delta and Serrate proteins interact with the extracellular domain of the Notch receptor and initiate signalling through the receptor. The two ligands are very similar in structure and have been shown to be interchangeable experimentally; however, loss of function analysis indicates that they have different functions during development and analysis of their signalling during wing development indicates that the Fringe protein can discriminate between the two ligands. This raises the possibility that the signalling of delta and Serrate through Notch requires different domains of the Notch protein. Here we have tested this possibility by examining the ability of delta and Serrate to interact and signal with Notch molecules in which different domains had been deleted. This analysis has shown that EGF-like repeats 11 and 12, the RAM-23 and cdc10/ankyrin repeats and the region C-terminal to the cdc10/ankyrin repeats of Notch are necessary for both delta and Serrate to signal via Notch. They also indicate, however, that delta and Serrate utilise EGF-like repeats 24-26 of Notch for signalling, but there are significant differences in the way they utilise these repeats.  相似文献   

5.
BACKGROUND: Secreted signaling proteins of the Wingless (Wg)/Wnt, Hedgehog and bone morphogenetic protein (BMP)/Decapentaplegic (Dpp) families function as morphogens to control growth and pattern formation during development. Although these proteins have been shown to act directly on distant cells in the developing limbs of the fruit fly Drosophila, little is known about how ligand gradients form in vivo. Wg protein is found in vesicles in Wg-responsive cells in the embryo and imaginal discs. It has been proposed that Wg may be transported by a vesicle-mediated mechanism. RESULTS: A novel method to visualize extracellular Wg protein was used to show that Wg forms an unstable gradient on the basolateral surface of the wing imaginal disc epithelium. Wg movement did not require internalization by dynamin-mediated endocytosis. Dynamin activity was, however, required for Wg secretion. By reversibly blocking Wg secretion, we found that Wg moves rapidly to form a long-range extracellular gradient. CONCLUSIONS: The Wg morphogen gradient forms by rapid movement of ligand through the extracellular space, and depends on continuous secretion and rapid turnover. Endocytosis is not required for Wg movement, but contributes to shaping the gradient by removing extracellular Wg. We propose that the extracellular Wg gradient forms by diffusion.  相似文献   

6.
7.
8.
Development of organ-specific size and shape demands tight coordination between tissue growth and cell-cell adhesion. Dynamic regulation of cell adhesion proteins thus plays an important role during organogenesis. In Drosophila, the homophilic cell adhesion protein DE-Cadherin (DE-Cad) regulates epithelial cell-cell adhesion at adherens junctions (AJs). Here, we show that along the proximodistal (PD) axis of the developing wing epithelium, apical cell shapes and expression of DE-Cad are graded in response to Wingless (Wg), a morphogen secreted from the dorsoventral (DV) organizer in distal wing, suggesting a PD gradient of cell-cell adhesion. The Fat (Ft) tumor suppressor, by contrast, represses DE-Cad expression. In genetic tests, ft behaves as a suppressor of Wg signaling. Cytoplasmic pool of beta-catenin/Arm, the intracellular transducer of Wg signaling, is negatively correlated with the activity of Ft. Moreover, unlike that of Wg, signaling by Ft negatively regulates the expression of Distalless (Dll) and Vestigial (Vg). Finally, we show that Ft intersects Wnt/Wg signaling, downstream of the Wg ligand. Fat and Wg signaling thus exert opposing regulation to coordinate cell-cell adhesion and patterning along the PD axis of Drosophila wing.  相似文献   

9.
Control of Drosophila eye specification by Wingless signalling   总被引:2,自引:0,他引:2  
Organ formation requires early specification of the groups of cells that will give rise to specific structures. The Wingless protein plays an important part in this regional specification of imaginal structures in Drosophila, including defining the region of the eye-antennal disc that will become retina. We show that Wingless signalling establishes the border between the retina and adjacent head structures by inhibiting the expression of the eye specification genes eyes absent, sine oculis and dachshund. Ectopic Wingless signalling leads to the repression of these genes and the loss of eyes, whereas loss of Wingless signalling has the opposite effects. Wingless expression in the anterior of wild-type discs is complementary to that of these eye specification genes. Contrary to previous reports, we find that under conditions of excess Wingless signalling, eye tissue is transformed not only into head cuticle but also into a variety of inappropriate structures.  相似文献   

10.
Rodriguez I 《PloS one》2011,6(4):e18418
Acquisition of a final shape and size during organ development requires a regulated program of growth and patterning controlled by a complex genetic network of signalling molecules that must be coordinated to provide positional information to each cell within the corresponding organ or tissue. The mechanism by which all these signals are coordinated to yield a final response is not well understood. Here, I have characterized the Drosophila ortholog of the human TGF-β Inducible Early Gene 1 (dTIEG). TIEG are zinc-finger proteins that belong to the Krüppel-like factor (KLF) family and were initially identified in human osteoblasts and pancreatic tumor cells for the ability to enhance TGF-β response. Using the developing wing of Drosophila as "in vivo" model, the dTIEG function has been studied in the control of cell proliferation and patterning. These results show that dTIEG can modulate Dpp signalling. Furthermore, dTIEG also regulates the activity of JAK/STAT pathway suggesting a conserved role of TIEG proteins as positive regulators of TGF-β signalling and as mediators of the crosstalk between signalling pathways acting in a same cellular context.  相似文献   

11.
During planar polarity patterning of the Drosophila wing, a "core" group of planar polarity genes has been identified which acts downstream of global polarity cues to locally coordinate cell polarity and specify trichome production at distal cell edges. These genes encode protein products that assemble into asymmetric apicolateral complexes that straddle the proximodistal junctional region between adjacent cells. We have carried out detailed genetic analysis experiments, analysing the requirements of each complex component for planar polarity patterning. We find that the three transmembrane proteins at the core of the complex, Frizzled, Strabismus and Flamingo, are required earliest in development and are the only components needed for intercellular polarity signalling. Notably, cells that lack both Frizzled and Strabismus are unable to signal, revealing an absolute requirement for both proteins in cell-cell communication. In contrast the cytoplasmic components Dishevelled, Prickle and Diego are not needed for intercellular communication. These factors contribute to the cell-cell propagation of polarity, most likely by promotion of intracellular asymmetry. Interestingly, both local polarity propagation and trichome placement occur normally in mutant backgrounds where asymmetry of polarity protein distribution is undetectable, suggesting such asymmetry is not an absolute requirement for any of the functions of the core complex.  相似文献   

12.
G protein-coupled receptors play particularly important roles in many organisms. The novel Drosophila gene anchor is an orthologue of vertebrate GPR155. However, the roles of anchor in molecular functions and biological processes, especially in wing development, remain unknown. Knockdown of anchor resulted in an increased wing size and additional and thickened veins. These abnormal wing phenotypes were similar to those observed in BMP signalling gain-of-function experiments. We observed that the BMP signalling indicator p-Mad was significantly increased in wing discs in which anchor RNAi was induced in larvae and accumulated abnormally in intervein regions in pupae. Furthermore, the expression of target genes of the BMP signalling pathway was examined using a lacZ reporter, and the results indicated that omb and sal were substantially increased in anchor-knockdown wing discs. An investigation of genetic interactions between Anchor and the BMP signalling pathway revealed that the thickened and ectopic vein tissues were rescued by knocking down BMP levels. These results suggested that Anchor functions to negatively regulate BMP signalling during wing development and vein formation.  相似文献   

13.
Imaginal discs contain a population of cells, known as peripodial epithelium, that differ morphologically and genetically from the rest of imaginal cells. The peripodial epithelium has a small contribution to the adult epidermis, though it is essential for the eversion of the discs during metamorphosis. The genetic mechanisms that control the identity and cellular morphology of the peripodial epithelia are poorly understood. In this report, we investigate the mechanisms that pattern the peripodial side of the wing imaginal disc during early larval development. At this time, the activities of the Wingless (Wg) and Epidermal growth factor receptor (Egfr) signalling pathways specify the prospective wing and notum fields, respectively. We show that peripodial epithelium specification occurs in the absence of Wingless and Egfr signalling. The ectopic activity in the peripodial epithelium of any of these signalling pathways transforms the shape of peripodial cells from squamous to columnar and resets their gene expression profile. Furthermore, peripodial cells where Wingless signalling is ectopically active acquire hinge identity, while ectopic Egfr activation results in notum specification. These findings suggest that suppression of Wg and Egfr activities is an early step in the development of the peripodial epithelium of the wing discs.  相似文献   

14.
In the third thoracic segment of Drosophila, wing development is suppressed by the homeotic selector gene Ultrabithorax (Ubx) in order to mediate haltere development. Previously, we have shown that Ubx represses dorsoventral (DV) signaling to specify haltere fate. Here we examine the mechanism of Ubx-mediated downregulation of DV signaling. We show that Wingless (Wg) and Vestigial (Vg) are differentially regulated in wing and haltere discs. In wing discs, although Vg expression in non-DV cells is dependent on DV boundary function of Wg, it maintains its expression by autoregulation. Thus, overexpression of Vg in non-DV cells can bypass the requirement for Wg signaling from the DV boundary. Ubx functions, at least, at two levels to repress Vestigial expression in non-DV cells of haltere discs. At the DV boundary, it functions downstream of Shaggy/GSK3 beta to enhance the degradation of Armadillo (Arm), which causes downregulation of Wg signaling. In non-DV cells, Ubx inhibits event(s) downstream of Arm, but upstream of Vg autoregulation. Repression of Vg at multiple levels appears to be crucial for Ubx-mediated specification of the haltere fate. Overexpression of Vg in haltere discs is enough to override Ubx function and cause haltere-to-wing homeotic transformations.  相似文献   

15.
16.
The Drosophila tracheal tree consists of a tubular network of epithelial branches that constitutes the respiratory system. Groups of tracheal cells migrate towards stereotyped directions while they acquire specific tracheal fates. This work shows that the wingless/WNT signalling pathway is needed within the tracheal cells for the formation of the dorsal trunk and for fusion of the branches. These functions are achieved through the regulation of target genes, such as spalt in the dorsal trunk and escargot in the fusion cells. The pathway also aids tracheal invagination and helps guide the ganglionic branch. Moreover the wingless/WNT pathway displays antagonistic interactions with the DPP (decapentaplegic) pathway, which regulates branching along the dorsoventral axis. Remarkably, the wingless gene itself, acting through its canonical pathway, seems not to be absolutely required for all these tracheal functions. However, the artificial overexpression of wingless in tracheal cells mimics the overexpression of a constitutively activated armadillo protein. The results suggest that another gene product, possibly a WNT, could help to trigger the wingless cascade in the developing tracheae.  相似文献   

17.
The Drosophila adult head mostly derives from the composite eye-antenna imaginal disc. The antennal disc gives rise to two adult olfactory organs: the antennae and maxillary palps. Here, we have analysed the regional specification of the maxillary palp within the antennal disc. We found that a maxillary field, defined by expression of the Hox gene Deformed, is established at about the same time as the eye and antennal fields during the L2 larval stage. The genetic program leading to maxillary regionalisation and identity is very similar to the antennal one, but is distinguished primarily by delayed prepupal expression of the ventral morphogen Wingless (Wg). We find that precociously expressing Wg in the larval maxillary field suffices to transform it towards antennal identity, whereas overexpressing Wg later in prepupae does not. These results thus indicate that temporal regulation of Wg is decisive to distinguishing maxillary and antennal organs. Wg normally acts upstream of the antennal selector spineless (ss) in maxillary development. However, mis-expression of Ss can prematurely activate wg via a positive-feedback loop leading to a maxillary-to-antenna transformation. We characterised: (1) the action of Wg through ss selector function in distinguishing maxillary from antenna; and (2) its direct contribution to identity choice.  相似文献   

18.
A fundamental concept in development is that secreted molecules such as Wingless (Wg) and Hedgehog (Hh) generate pattern by inducing cell fate. By following markers of cellular identity posterior to the Wg- and Hh-expressing cells in the Drosophila dorsal embryonic epidermis, we provide evidence that neither Wg nor Hh specifies the identity of the cell types they pattern. Rather, they maintain pre-existing cellular identities that are otherwise unstable and progress stepwise towards a default fate. Wg and Hh therefore generate pattern by inhibiting specific switches in cell identity, showing that the specification and the patterning of a given cell are uncoupled. Sequential binary decisions without induction of cell identity give rise to both the groove cells and their posterior neighbors. The combination of independent progression of cell identity and arrest of progression by signals facilitates accurate patterning of an extremely plastic developing epidermis.  相似文献   

19.
The germline cells of Drosophila are derived from pole cells, which form at the posterior pole of the blastoderm and become primordial germ cells (PGCs). To elucidate the signal transduction pathways for the development of embryonic PGCs, we examined the effects of various growth factors on the proliferation of PGCs. Up- and down-regulation of Wingless (Wg) in both of soma and PGCs caused an increase and a decrease in the number of PGCs, respectively. The Wg/β-catenin signaling pathway began to occur in PGCs at the same time as the PGCs began to divide during the embryonic stage in both sexes. In addition, PGCs were found to produce wg mRNA as they begin to divide. Thus, Wg functions as an autocrine factor to initiate mitosis in embryonic PGCs. Decapentaplegic affected the growth of PGCs from the end of the embryonic stage. The results indicate that these growth factors regulate the division of embryonic PGCs in a stage-specific manner.  相似文献   

20.
We describe the role of the Drosophila melanogaster hephaestus gene in wing development. We have identified several hephaestus mutations that map to a gene encoding a predicted RNA-binding protein highly related to human polypyrimidine tract binding protein and Xenopus laevis 60 kDa Vg1 mRNA-binding protein. Polypyrimidine tract binding proteins play diverse roles in RNA processing including the subcellular localization of mRNAs, translational control, internal ribosome entry site use, and the regulation of alternate exon selection. The analysis of gene expression in imaginal discs and adult cuticle of genetic mosaic animals supports a role for hephaestus in Notch signalling. Somatic clones lacking hephaestus express the Notch target genes wingless and cut, induce ectopic wing margin in adjacent wild-type tissue, inhibit wing-vein formation and have increased levels of Notch intracellular domain immunoreactivity. Clones mutant for both Delta and hephaestus have the characteristic loss-of-function thick vein phenotype of DELTA: These results lead to the hypothesis that hephaestus is required to attenuate Notch activity following its activation by Delta. This is the first genetic analysis of polypyrimidine tract binding protein function in any organism and the first evidence that such proteins may be involved in the Notch signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号