首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Meaningful exchange of microarray data is currently difficult because it is rare that published data provide sufficient information depth or are even in the same format from one publication to another. Only when data can be easily exchanged will the entire biological community be able to derive the full benefit from such microarray studies.

Results

To this end we have developed three key ingredients towards standardizing the storage and exchange of microarray data. First, we have created a minimal information for the annotation of a microarray experiment (MIAME)-compliant conceptualization of microarray experiments modeled using the unified modeling language (UML) named MAGE-OM (microarray gene expression object model). Second, we have translated MAGE-OM into an XML-based data format, MAGE-ML, to facilitate the exchange of data. Third, some of us are now using MAGE (or its progenitors) in data production settings. Finally, we have developed a freely available software tool kit (MAGE-STK) that eases the integration of MAGE-ML into end users' systems.

Conclusions

MAGE will help microarray data producers and users to exchange information by providing a common platform for data exchange, and MAGE-STK will make the adoption of MAGE easier.  相似文献   

2.
3.
MOTIVATION: To evaluate microarray data, clustering is widely used to group biological samples or genes. However, problems arise when comparing heterologous databases. As the clustering algorithm searches for similarities between experiments, it will most likely first separate the data sets, masking relationships that exist between samples from different databases. RESULTS: We developed a program, Venn Mapper, to calculate the statistical significance of the number of co-occurring differentially expressed genes in any of the two experiments. For proof of principle, we analysed a heterologous data set of 170 microarrays including breast and prostate cancer microarray analyses. Significant overlap was found in an unsupervised analysis between metastasized prostate cancer and metastasized breast cancer and BRCA mutated breast cancer. A comparison between single microarray data and the averaged breast and prostate data sets was also evaluated. This analysis suggests that genes expressed higher in stromal cells are also implicated in metastatic prostate cancer and BRCA mutated breast cancer. The Venn Mapper program identifies overlaps between samples from heterologous data sets and directly extracts the genes responsible for the overlap. From this information novel biological hypotheses may be addressed. AVAILABILITY: Venn Mapper is freely available on http://www.erasmusmc.nl/gatcplatform. SUPPLEMENTARY INFORMATION: http://www.erasmusmc.nl/gatcplatform/vennmapper.html.  相似文献   

4.
The microarray gene expression markup language (MAGE-ML) is a widely used XML (eXtensible Markup Language) standard for describing and exchanging information about microarray experiments. It can describe microarray designs, microarray experiment designs, gene expression data and data analysis results. We describe RMAGEML, a new Bioconductor package that provides a link between cDNA microarray data stored in MAGE-ML format and the Bioconductor framework for preprocessing, visualization and analysis of microarray experiments. AVAILABILITY: http://www.bioconductor.org. Open Source.  相似文献   

5.
6.
7.
DNA microarray experiments: biological and technological aspects   总被引:8,自引:0,他引:8  
Nguyen DV  Arpat AB  Wang N  Carroll RJ 《Biometrics》2002,58(4):701-717
DNA microarray technologies, such as cDNA and oligonucleotide microarrays, promise to revolutionize biological research and further our understanding of biological processes. Due to the complex nature and sheer amount of data produced from microarray experiments, biologists have sought the collaboration of experts in the analytical sciences, including statisticians, among others. However, the biological and technical intricacies of microarray experiments are not easily accessible to analytical experts. One aim for this review is to provide a bridge to some of the relevant biological and technical aspects involved in microarray experiments. While there is already a large literature on the broad applications of the technology, basic research on the technology itself and studies to understand process variation remain in their infancy. We emphasize the importance of basic research in DNA array technologies to improve the reliability of future experiments.  相似文献   

8.
MOTIVATION: The generation of large amounts of microarray data and the need to share these data bring challenges for both data management and annotation and highlights the need for standards. MIAME specifies the minimum information needed to describe a microarray experiment and the Microarray Gene Expression Object Model (MAGE-OM) and resulting MAGE-ML provide a mechanism to standardize data representation for data exchange, however a common terminology for data annotation is needed to support these standards. RESULTS: Here we describe the MGED Ontology (MO) developed by the Ontology Working Group of the Microarray Gene Expression Data (MGED) Society. The MO provides terms for annotating all aspects of a microarray experiment from the design of the experiment and array layout, through to the preparation of the biological sample and the protocols used to hybridize the RNA and analyze the data. The MO was developed to provide terms for annotating experiments in line with the MIAME guidelines, i.e. to provide the semantics to describe a microarray experiment according to the concepts specified in MIAME. The MO does not attempt to incorporate terms from existing ontologies, e.g. those that deal with anatomical parts or developmental stages terms, but provides a framework to reference terms in other ontologies and therefore facilitates the use of ontologies in microarray data annotation. AVAILABILITY: The MGED Ontology version.1.2.0 is available as a file in both DAML and OWL formats at http://mged.sourceforge.net/ontologies/index.php. Release notes and annotation examples are provided. The MO is also provided via the NCICB's Enterprise Vocabulary System (http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do). CONTACT: Stoeckrt@pcbi.upenn.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

9.
The most common group of cancers among American women involves malignancies of the breast. Breast cancer is a complex disease, involving several different types of tissues and specific cells with various functions, that is categorized into many distinct subtypes. Microarray analysis has recently revealed that different biological subtypes of breast cancer are accompanied by differences in their specific gene expression profile. Because breast tissue (and breast cancer) is heterogeneous, microarray analysis may provide clinicians with a better understanding of how to treat each specific case. Thus, microarray analysis may translate basic research data into more confident diagnoses, specifically designed treatment regimens geared to each patient's needs, and better clinical prognoses.  相似文献   

10.
ABSTRACT

Introduction: Protein microarray is a powerful tool for both biological study and clinical research. The most useful features of protein microarrays are their miniaturized size (low reagent and sample consumption), high sensitivity and their capability for parallel/high-throughput analysis. The major focus of this review is functional proteome microarray.

Areas covered: For proteome microarray, this review will discuss some recently constructed proteome microarrays and new concepts that have been used for constructing proteome microarrays and data interpretation in past few years, such as PAGES, M-NAPPA strategy, VirD technology, and the first protein microarray database. this review will summarize recent proteomic scale applications and address the limitations and future directions of proteome microarray technology.

Expert opinion: Proteome microarray is a powerful tool for basic biological and clinical research. It is expected to see improvements in the currently used proteome microarrays and the construction of more proteome microarrays for other species by using traditional strategies or novel concepts. It is anticipated that the maximum number of features on a single microarray and the number of possible applications will be increased, and the information that can be obtained from proteome microarray experiments will more in-depth in the future.  相似文献   

11.
ArrayExpress is a new public database of microarray gene expression data at the EBI, which is a generic gene expression database designed to hold data from all microarray platforms. ArrayExpress uses the annotation standard Minimum Information About a Microarray Experiment (MIAME) and the associated XML data exchange format Microarray Gene Expression Markup Language (MAGE-ML) and it is designed to store well annotated data in a structured way. The ArrayExpress infrastructure consists of the database itself, data submissions in MAGE-ML format or via an online submission tool MIAMExpress, online database query interface, and the Expression Profiler online analysis tool. ArrayExpress accepts three types of submission, arrays, experiments and protocols, each of these is assigned an accession number. Help on data submission and annotation is provided by the curation team. The database can be queried on parameters such as author, laboratory, organism, experiment or array types. With an increasing number of organisations adopting MAGE-ML standard, the volume of submissions to ArrayExpress is increasing rapidly. The database can be accessed at http://www.ebi.ac.uk/arrayexpress.  相似文献   

12.
We address the problem of using expression data and prior biological knowledge to identify differentially expressed pathways or groups of genes. Following an idea of Ideker et al. (2002), we construct a gene interaction network and search for high-scoring subnetworks. We make several improvements in terms of scoring functions and algorithms, resulting in higher speed and accuracy and easier biological interpretation. We also assign significance levels to our results, adjusted for multiple testing. Our methods are successfully applied to three human microarray data sets, related to cancer and the immune system, retrieving several known and potential pathways. The method, denoted by the acronym GXNA (Gene eXpression Network Analysis) is implemented in software that is publicly available and can be used on virtually any microarray data set. SUPPLEMENTARY INFORMATION: The source code and executable for the software, as well as certain supplemental materials, can be downloaded from http://stat.stanford.edu/~serban/gxna.  相似文献   

13.
ArrayExpress is a public microarray repository founded on the Minimum Information About a Microarray Experiment (MIAME) principles that stores MIAME-compliant gene expression data. Plant-based data sets represent approximately one-quarter of the experiments in ArrayExpress. The majority are based on Arabidopsis (Arabidopsis thaliana); however, there are other data sets based on Triticum aestivum, Hordeum vulgare, and Populus subsp. AtMIAMExpress is an open-source Web-based software application for the submission of Arabidopsis-based microarray data to ArrayExpress. AtMIAMExpress exports data in MAGE-ML format for upload to any MAGE-ML-compliant application, such as J-Express and ArrayExpress. It was designed as a tool for users with minimal bioinformatics expertise, has comprehensive help and user support, and represents a simple solution to meeting the MIAME guidelines for the Arabidopsis community. Plant data are queryable both in ArrayExpress and in the Data Warehouse databases, which support queries based on gene-centric and sample-centric annotation. The AtMIAMExpress submission tool is available at http://www.ebi.ac.uk/at-miamexpress/. The software is open source and is available from http://sourceforge.net/projects/miamexpress/. For information, contact miamexpress@ebi.ac.uk.  相似文献   

14.

Background  

The increasing number of gene expression microarray studies represents an important resource in biomedical research. As a result, gene expression based diagnosis has entered clinical practice for patient stratification in breast cancer. However, the integration and combined analysis of microarray studies remains still a challenge. We assessed the potential benefit of data integration on the classification accuracy and systematically evaluated the generalization performance of selected methods on four breast cancer studies comprising almost 1000 independent samples. To this end, we introduced an evaluation framework which aims to establish good statistical practice and a graphical way to monitor differences. The classification goal was to correctly predict estrogen receptor status (negative/positive) and histological grade (low/high) of each tumor sample in an independent study which was not used for the training. For the classification we chose support vector machines (SVM), predictive analysis of microarrays (PAM), random forest (RF) and k-top scoring pairs (kTSP). Guided by considerations relevant for classification across studies we developed a generalization of kTSP which we evaluated in addition. Our derived version (DV) aims to improve the robustness of the intrinsic invariance of kTSP with respect to technologies and preprocessing.  相似文献   

15.
We consider modeling jointly microarray RNA expression and DNA copy number data. We propose Bayesian mixture models that define latent Gaussian probit scores for the DNA and RNA, and integrate between the two platforms via a regression of the RNA probit scores on the DNA probit scores. Such a regression conveniently allows us to include additional sample specific covariates such as biological conditions and clinical outcomes. The two developed methods are aimed respectively to make inference on differential behaviour of genes in patients showing different subtypes of breast cancer and to predict the pathological complete response (pCR) of patients borrowing strength across the genomic platforms. Posterior inference is carried out via MCMC simulations. We demonstrate the proposed methodology using a published data set consisting of 121 breast cancer patients.  相似文献   

16.
Pre-clinical studies provide compelling evidence that Eph family receptor tyrosine kinases (RTKs) and ligands promote cancer growth, neovascularization, invasion, and metastasis. Tumor suppressive roles have also been reported for the receptors, however, creating a potential barrier for clinical application. Determining how these observations relate to clinical outcome is a crucial step for translating the biological and mechanistic data into new molecularly targeted therapies. We investigated eph and ephrin expression in human breast cancer relative to endpoints of overall and/or recurrence-free survival in large microarray datasets. We also investigated protein expression in commercial human breast tissue microarrays (TMA) and Stage I prognostic TMAs linked to recurrence outcome data. We found significant correlations between ephA2, ephA4, ephA7, ephB4, and ephB6 and overall and/or recurrence-free survival in large microarray datasets. Protein expression in TMAs supported these trends. While observed no correlation between ephrin ligand expression and clinical outcome in microarray datasets, ephrin-A1 and EphA2 protein co-expression was significantly associated with recurrence in Stage I prognostic breast cancer TMAs. Our data suggest that several Eph family members are clinically relevant and tractable targets for intervention in human breast cancer. Moreover, profiling Eph receptor expression patterns in the context of relevant ligands and in the context of stage may be valuable in terms of diagnostics and treatment.  相似文献   

17.
Flow cytometry (FCM) is an analytical tool widely used for cancer and HIV/AIDS research, and treatment, stem cell manipulation and detecting microorganisms in environmental samples. Current data standards do not capture the full scope of FCM experiments and there is a demand for software tools that can assist in the exploration and analysis of large FCM datasets. We are implementing a standardized approach to capturing, analyzing, and disseminating FCM data that will facilitate both more complex analyses and analysis of datasets that could not previously be efficiently studied. Initial work has focused on developing a community-based guideline for recording and reporting the details of FCM experiments. Open source software tools that implement this standard are being created, with an emphasis on facilitating reproducible and extensible data analyses. As well, tools for electronic collaboration will assist the integrated access and comprehension of experiments to empower users to collaborate on FCM analyses. This coordinated, joint development of bioinformatics standards and software tools for FCM data analysis has the potential to greatly facilitate both basic and clinical research--impacting a notably diverse range of medical and environmental research areas.  相似文献   

18.
MOTIVATION: Clinical data, such as patient history, laboratory analysis, ultrasound parameters--which are the basis of day-to-day clinical decision support--are often underused to guide the clinical management of cancer in the presence of microarray data. We propose a strategy based on Bayesian networks to treat clinical and microarray data on an equal footing. The main advantage of this probabilistic model is that it allows to integrate these data sources in several ways and that it allows to investigate and understand the model structure and parameters. Furthermore using the concept of a Markov Blanket we can identify all the variables that shield off the class variable from the influence of the remaining network. Therefore Bayesian networks automatically perform feature selection by identifying the (in)dependency relationships with the class variable. RESULTS: We evaluated three methods for integrating clinical and microarray data: decision integration, partial integration and full integration and used them to classify publicly available data on breast cancer patients into a poor and a good prognosis group. The partial integration method is most promising and has an independent test set area under the ROC curve of 0.845. After choosing an operating point the classification performance is better than frequently used indices.  相似文献   

19.
MOTIVATION: The diverse microarray datasets that have become available over the past several years represent a rich opportunity and challenge for biological data mining. Many supervised and unsupervised methods have been developed for the analysis of individual microarray datasets. However, integrated analysis of multiple datasets can provide a broader insight into genetic regulation of specific biological pathways under a variety of conditions. RESULTS: To aid in the analysis of such large compendia of microarray experiments, we present Microarray Experiment Functional Integration Technology (MEFIT), a scalable Bayesian framework for predicting functional relationships from integrated microarray datasets. Furthermore, MEFIT predicts these functional relationships within the context of specific biological processes. All results are provided in the context of one or more specific biological functions, which can be provided by a biologist or drawn automatically from catalogs such as the Gene Ontology (GO). Using MEFIT, we integrated 40 Saccharomyces cerevisiae microarray datasets spanning 712 unique conditions. In tests based on 110 biological functions drawn from the GO biological process ontology, MEFIT provided a 5% or greater performance increase for 54 functions, with a 5% or more decrease in performance in only two functions.  相似文献   

20.
MOTIVATION: The use of DNA microarrays has become quite popular in many scientific and medical disciplines, such as in cancer research. One common goal of these studies is to determine which genes are differentially expressed between cancer and healthy tissue, or more generally, between two experimental conditions. A major complication in the molecular profiling of tumors using gene expression data is that the data represent a combination of tumor and normal cells. Much of the methodology developed for assessing differential expression with microarray data has assumed that tissue samples are homogeneous. RESULTS: In this paper, we outline a general framework for determining differential expression in the presence of mixed cell populations. We consider study designs in which paired tissues and unpaired tissues are available. A hierarchical mixture model is used for modeling the data; a combination of methods of moments procedures and the expectation-maximization algorithm are used to estimate the model parameters. The finite-sample properties of the methods are assessed in simulation studies; they are applied to two microarray datasets from cancer studies. Commands in the R language can be downloaded from the URL http://www.sph.umich.edu/~ghoshd/COMPBIO/COMPMIX/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号