首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the influence of the htpG gene on thermal stress management in Bacillus subtilis, two different kinds of htpG mutation were constructed. In one case, the gene was inactivated by insertion of a cat cassette in to the coding region; htpG was thus found to be non-essential. In the second case, the htpG gene was fused to a xylose-dependent promoter, allowing expression of the gene to be controlled. In the absence of HtpG protein, recovery of cells from a heat shock at 53°?C was retarded, and this delay could be eliminated by overproduction of HtpG. While htpG is not involved in the development of induced thermotolerance, DnaK and GroE proteins are absolutely required. Overproduction of class I heat-shock proteins prior to shifting cells to a lethal temperature is important but not sufficient for the development of intrinsic thermotolerance. It could be shown that the HtpG protein does not act as a cellular thermometer in B. subtilis.  相似文献   

2.
The heat shock protein HtpG, which is a homolog of HSP90, is essential for basal and acquired thermotolerances in cyanobacteria. Recently we demonstrated that HtpG was involved in the acclimation to low temperatures in cyanobacteria. In this study, we elucidated a role of HtpG in the cyanobacterium Synechococcus sp. PCC 7942, in the acclimation to oxidative stress that was caused by high irradiance and/or methyl viologen. The inactivation of the htpG gene resulted in a decrease in the survival rate and an increase in the photoinhibition of photosystem II when cells in a liquid medium were incubated under high light conditions. The htpG mutant was highly sensitive to methyl viologen when it was grown on an agar plate. High irradiance and/or methyl viologen greatly increased the expression of the htpG gene as well as the groEL gene in the wild-type strain. Taken together, our results suggest that HtpG may play a role by itself or with other molecular chaperones in the acclimation to oxidative stress. Received: 1 April 2002 / Accepted: 4 May 2002  相似文献   

3.
The heat shock protein HtpG is homologous to members of the Hsp90 protein family of eukaryotes and is essential for basal and acquired thermotolerances in cyanobacteria. In this study we have examined the role of HtpG in the cyanobacterium, Synechococcus sp. PCC 7942, in the acclimation to low temperatures. The inactivation of the htpG gene resulted in severe inhibition of cell growth and of the photosynthetic activity when the htpG mutant was shifted to 16°C from 30°C. Wild-type cells were able to resume growth without a lag period when shifted to 30°C after 5 days at 16°C, while the mutant displayed a detectable lag. The HtpG protein was induced in the wild-type cells at 16°C. Electrophoresis in the absence of sodium dodecyl sulfate (SDS) showed that a novel, high-molecular-weight complex containing GroEL and DnaK accumulated at 16°C, but the accumulation was strongly inhibited in the htpG mutant. Our results demonstrate that the HtpG protein contributes significantly to the ability of cyanobacteria to acclimate to low temperatures. Received: 16 July 2001/Accepted: 15 August 2001  相似文献   

4.
《Gene》1996,179(2):199-204
In a search for clones from a λgtl 1 expression library of Actinobacillus actinomycetemcomitans (Aa) genomic DNA that expressed epitopes from a 70-kDa iron-repressible membrane protein, we inadvertently identified clones that encoded a member of the 90-kDa heat-shock protein (HSP 90) family. The gene appears to encode a homologue of HtpG, as the nucleotide sequence has ∼70% identity with the Escherichia coli (Ec) and Vibrio fischeri htpG. Growth of an Aa htpG insertion mutant at 42°C was reduced to 50% of the parent strain, similar to an Ec htpG deletion mutant. These data suggest that Aa HtpG performs a function similar to Ec HtpG.  相似文献   

5.
In cyanobacteria, a disruptant of hspA encoding a small heat shock protein homologue, shows decreased cell growth rates at moderately high temperatures, and loss of both basal and acquired thermo-tolerances, which resemble the phenotype of an htpG disruptant. In vitro studies have shown that both small heat shock protein and Hsp90 can bind and keep non-native proteins in a refolding-competent state under denaturing conditions. The aim of the present study is to elucidate whether constitutive expression of HspA can functionally replace HtpG, a prokaryotic homolog of Hsp90, in the cyanobacterium Synechococcus sp. PCC 7942. HspA did not improve the viability of the htpG disruptant at a lethal temperature, although it did that of the wild type. It did not improve an iron-starved phenotype of the mutant under normal growth conditions, a novel phenotype found in the present study. These results suggest that cellular function of HtpG may differ significantly from that of HspA.  相似文献   

6.
Differences in expression of the Escherichia coli stress protein HtpG were found following exposure of exponentially growing cells to heat or chemical shock when cells were grown under different environmental conditions. With an htpG::lacZ reporter system, htpG expression increased in cells grown in a complex medium (Luria-Bertani [LB] broth) following a temperature shock at 45°C. In contrast, no HtpG overexpression was detected in cells grown in a glucose minimal medium, despite a decrease in the growth rate. Similarly, in pyruvate-grown cells there was no heat shock induction of HtpG expression, eliminating the possibility that repression of HtpG in glucose-grown E. coli was due to catabolite repression. When 5 mM phenol was used as a chemical stress agent for cells growing in LB broth, expression of HtpG increased. However, when LB-grown cells were subjected to stress with 10 mM phenol and when both 5 and 10 mM phenol were added to glucose-grown cultures, repression of htpG expression was observed. 2-Chlorophenol stress resulted in overexpression of HtpG when cells were grown in complex medium but repression of HtpG synthesis when cells were grown in glucose. No induction of htpG expression was seen with 2,4-dichlorophenol in cells grown with either complex medium or glucose. The results suggest that, when a large pool of amino acids and proteins is available, as in complex medium, a much stronger stress response is observed. In contrast, when cells are grown in a simple glucose mineral medium, htpG expression either is unaffected or is even repressed by imposition of a stress condition. The results demonstrate the importance of considering differences in growth environment in order to better understand the nature of the response to an imposed stress condition.  相似文献   

7.
HtpG, a homologue of HSP90, is essential for thermotolerance in cyanobacteria. It is not known how it plays this important role. We obtained evidence that HtpG interacts with linker polypeptides of phycobilisome in the cyanobacterium Synechococcus elongatus PCC 7942. In an htpG mutant, the 30 kDa rod linker polypeptide was reduced. In vitro studies with purified HtpG and phycobilisome showed that HtpG interacts with the linker polypeptide as well as other linker polypeptides to suppress their thermal aggregation with a stoichiometry of one linker polypeptide/HtpG dimer. We constructed various domain‐truncated derivatives of HtpG to identify putative chaperone sites at which HtpG binds linker polypeptides. The middle domain and the N‐terminal domain, although less efficiently, prevented the aggregation of denatured polypeptides, while the C‐terminal domain did not. Truncation of the C‐terminal domain that is involved in the dimerization of HtpG led to decrease in the anti‐aggregation activity, while fusion of the N‐terminal domain to the middle domain lowered the activity. In vitro studies with HtpG and the isolated 30 kDa rod linker polypeptide provided basically similar results to those with HtpG and phycobilisome. ADP inhibited the anti‐aggregation activity, indicating that a compact ADP conformational state provides weaker aggregation protection compared with the others.  相似文献   

8.
9.
The bacterial chaperone high-temperature protein G (HtpG), a member of the Hsp90 protein family, is involved in the protection of cells against a variety of environmental stresses. The ability of HtpG to form complexes with other bacterial proteins, especially those involved in fundamental functions, is indicative of its cellular role. An interaction between HtpG and DnaA, the main initiator of DNA replication, was studied both in vivo, using a bacterial two-hybrid system, and in vitro with a modified pull-down assay and by chemical cross-linking. In vivo, this interaction was demonstrated only when htpG was expressed from a high copy number plasmid. Both in vitro assays confirmed HtpG–DnaA interactions.  相似文献   

10.
Late embryogenesis abundant (LEA) proteins are speculated to protect against water stress in plants. Group 1 LEA proteins are hydrophilic and vary mainly in the numbers of an extremely hydrophilic internal 20-amino-acid motif. This motif is present up to four times in Arabidopsisthaliana and Hordeum vulgare Group 1 proteins and has been described in numerous plant species. However, no similarity has yet been described between Group 1 genes or gene products and those from non-plant species. We report here the striking similarity between the repeated internal motif of Group 1 LEA proteins and a repeated hydrophilic motif present in a stress-related protein (GsiB) from Bacillus subtilis. Received: 20 April 1998 / Accepted: 18 May 1998  相似文献   

11.
The effect of some culture variables in the production of β-galactosidase from Escherichia coli in Bacillus subtilis was evaluated. The lacZ gene was expressed in B. subtilis using the regulatory region of the subtilisin gene aprE. The host contained also the hpr2 and degU32 mutations, which are known to overexpress the aprE gene. We found that, when this overproducing B. subtilis strain was grown in mineral medium supplemented with glucose (MMG), β-galactosidase production was partially growth-associated, as 40%–60% of the maximum enzyme activity was produced before the onset of the stationary phase. In contrast, when a complex medium was used, β-galactosidase was produced only at low levels during vegetative growth, whereas it accumulated to high levels during early stationary phase. Compared with the results obtained in complex media, a 20% increase in specific β-galactosidase activity in MMG supplemented with 11.6 g/l glucose was obtained. On the 1-l fermenter scale, a threefold increase in volumetric β-galactosidase activity was obtained when the glucose concentration was varied from 11 g/l to 26 g/l. In addition, glucose feeding during the stationary phase resulted in a twofold increase in volumetric enzyme activity as cellular lysis was prevented. Finally, we showed that oxygen uptake and carbon dioxide evolution rates can be used for on-line determination of the onset of stationary phase, glucose depletion and biomass concentration. Received: 18 April 1996 / Received revision: 27 August 1996 / Accepted: 6 September 1996  相似文献   

12.
The secretion of proteins from Bacillus subtilis was studied under physiologically well-defined conditions in continuous cultures at a range of specific growth rates. The kinetics of secretion was analysed by using pulse-chase and immunoprecipitation techniques that allowed both processing and release to be monitored. Growth conditions were selected that were known to lead to significant changes in the anionic polymer composition of the cell wall. Under magnesium limitation only low levels of native proteins were released into the growth medium. In contrast, much higher amounts of released protein were observed under phosphate limitation. Although synthesis of native secretory proteins appeared to be highly regulated, only minor changes in the secretion of heterologous proteins were detected. Comparable kinetics of protein release of cells grown under different conditions indicated similar cell wall permeabilities. The large changes in the amounts of released proteins were not reflected in the production of chaperones and components required for protein secretion. The data suggest that the capacity of the secretion machinery is not a major limiting step in the export of native secretory proteins. Received: 23 September 1997 / Received revision: 10 November 1997 / Accepted: 16 November 1997  相似文献   

13.
14.
The htpG null mutant was obtained by inserting a chloramphenicol resistance cassette (Cm r) in the htpG coding sequence. The htpG null mutant (htpG), hsp16.6, and the double mutant, htpG::hsp16.6 cells showed little growth disadvantage at 30°C and 37°C, but not at 40°C. This suggests that HtpG and HSP16.6 proteins do not have an essential role during growth at normal and mildly elevated temperatures. Cell growth, cell survival rate, and oxygen electrode measurements demonstrated that htpG, hsp16.6, and htpG::hsp16.6 cells were sensitive to heat stress. Decreased basal and acquired thermotolerance was observed when mutants were heat shocked, with htpG::hsp16.6 being the most sensitive. A comparison of mutants showed that hsp16.6 was more sensitive to heat shock than htpG. Received: 19 November 2002 / Accepted: 19 December 2002  相似文献   

15.
A Tn5-based transposon bearing the kil gene (killing protein), mediating controlled export of periplasmic proteins into the culture medium, was constructed (Tn5-KIL3). This transposon contained the kil gene of the ColE1 plasmid under the growth-phase-dependent promoter of the fic gene (filamentation induced by cAMP) of Escherichia coli, an interposon located upstream of kil, a kanamycin/neomycin-resistance gene, a multiple cloning site and the mob site. The transposition of Tn5-KIL3 to Acetobacter methanolicus showed a moderate transposition frequency (10−5–10−6). By insertion of a Bacillus hybrid β-glucanase (bgl ) as a model protein into the transposon (Tn5-LF3) it was shown that the secretion function as well as the gene of the target protein had been transferred to and stably integrated into the chromosome of A. methanolicus, and that the transposition of Tn5-LF3 was non-specific. β-Glucanase was highly overexpressed and secreted into the medium during stationary phase. Total and extracellular production of β-glucanase varied depending on the integration site of the transposon. The viability of the bacterial cells was not affected, and cell lysis did not occur. Received: 17 October 1996 / Received revision: 23 December 1996 / Accepted: 4 January 1997  相似文献   

16.
The essential nucleoid-associated protein HBsu of Bacillus subtilis comprises 92 residues, 20% of which are basic amino acids. To investigate the role of the residues located within the DNA-binding arm, the arginine residues R58 and R61 were changed to leucine, while lysine residues K80 and K86 were replaced by alanine. All altered proteins exhibited a reduction in DNA binding capacity, ranging from 10% to 30% of HBsu wild type DNA-binding ability. To investigate the physiological effect of these mutations in B. subtilis, the indigenous hbs gene was replaced by the mutated genes. B. subtilis strain PK20, which carries the HBsu mutation R58L which exhibits the lowest DNA binding ability in vitro, showed the strongest retardation of growth compared to the wild type. Furthermore, PK20 cells displayed an increased rate of cell lysis, diminished sporulation efficiency and a reduced level of negatively supercoiled DNA. These observations suggest that the DNA binding ability of HBsu DNA is important for growth and differentiation and influences DNA topology. Received: 27 July 1998 / Accepted: 22 September 1998  相似文献   

17.
Pulmonary infection activates acute inflammatory responses by recruiting neutrophils to the infection site; this recruitment is promoted by interleukin-8 (IL-8). However, IL-8 production in response to Pseudomonas aeruginosa HtpG (PA1596), a homolog of heat shock protein 90, has yet not been characterized in detail. htpG expression in P. aeruginosa strain was elevated upon infection of host cells, and HtpG was released into bacterial culture supernatant. Treatment of dTHP-1 macrophages with recombinant HtpG (rHtpG) increased production of IL-8 in a dose- and time-dependent manner, and this effect was abolished by inhibition of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) p38 signaling. By contrast, the rHtpG-mediated production of IL-8 was increased by suppression of cylindromatosis (CYLD), suggesting that CYLD is a negative regulator of this pathway. The upregulation of expression was coordinated by signals transmitting through toll-like receptor 4 (TLR4) with the aid of CD91. Together, these observations suggest that P. aeruginosa HtpG activates NF-κB, CYLD, and p38 MAPK in a TLR4-and CD91-dependent manner, leading to stimulation of IL-8 production in macrophages.  相似文献   

18.
In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.  相似文献   

19.
The function of the endoplasmic-reticulum-localized chaperone binding protein (BiP) in relation to protein secretion in filamentous fungi was studied. It was shown that the overproduction of several homologous and heterologous recombinant proteins by Aspergillus strains induces the expression of bipA, the BiP-encoding gene from Aspergillus niger and Aspergillus awamori. As this result could imply that BiP plays a role in protein overproduction, the effect of modulation of bipA gene expression on protein secretion was studied in several recombinant strains expressing glucoamylase (glaA) fusion genes. For overproduction of BiPA in these strains, extra copies of the bipA gene under the control of an inducible promoter were introduced. To allow analysis of the effect of a decreased bipA expression level on protein secretion, replacement of the wild-type gene for a bipA gene driven by the glaA promoter was attempted. However, this endeavour failed because of the lethality of this replacement. Although the final amount of secreted recombinant protein did not change significantly in strains with increased BiPA levels, increased levels of unprocessed fusion protein were detected in the total protein extracts of these strains. Received: 9 February 1998 / Received last revision: 26 May 1998 / Accepted: 14 June 1998  相似文献   

20.
To produce xylobiose from xylan, high-level expression of an endoxylanase gene from Bacillus sp. was carried out in Bacillus subtilis DB104. A 1.62-kb SmaI DNA fragment, coding for an endoxylanase of Bacillus sp., was ligated into the Escherichia coli/B. subtilis shuttle vector pJH27Δ88, producing pJHKJ4, which was subsequently transformed into B. subtilis DB104. A maximum endoxylanase activity of 105 U/ml was obtained from the supernatant of B. subtilis DB104 harboring pJHKJ4. The endoxylanase was purified to homogeneity by ion-exchange chromatography and the production profile of xylooligosaccharides from xylan by the endoxylanase was examined by HPLC with a carbohydrate analysis column. Xylobiose was the major product from xylan at 40 °C and its proportion in the xylan hydrolyzates increased with the reaction time; at 12 h, over 60% of the reaction products was xylobiose. These results suggest that xylobiose, which has a stimulatory effect on the selective growth of the intestinal bacterium Bifidobacterium, can be mass-produced effectively by the endoxylanase of Bacillus sp. cloned in B. subtilis. Received: 2 January 1998 / Received revision: 4 March 1998 / Accepted: 4 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号