首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
An H6N1 virus, A/teal/Hong Kong/W312/97 (W312), was isolated during the "bird flu" incident in Hong Kong in 1997. Genetic analysis suggested that this virus might be the progenitor of the A/Hong Kong/156/97 (HK/97) H5N1 virus, as seven of eight gene segments of those viruses had a common source. Continuing surveillance in Hong Kong showed that a W312-like virus was prevalent in quail and pheasants in 1999; however, the further development of H6N1 viruses has not been investigated since 2001. Here we report influenza virus surveillance data collected in southern China from 2000 to 2005 that show that H6N1 viruses have become established and endemic in minor poultry species and replicate mainly in the respiratory tract. Phylogenetic analysis indicated that all H6N1 isolates had W312-like hemagglutinin and neuraminidase genes. However, reassortment of internal genes between different subtype virus lineages, including H5N1, H9N2, and other avian viruses, generated multiple novel H6N1 genotypes in different types of poultry. These novel H6N1/N2 viruses are double, triple, or even quadruple reassortants. Reassortment between a W312-like H6N1 virus and an A/quail/Hong Kong/G1/97 (HK/97)-like H9N2 virus simultaneously generated novel H6N2 subtype viruses that were persistent in poultry. Molecular analyses suggest that W312-like viruses may not be the precursors of HK/97 virus but reassortants from an HK/97-like virus and another unidentified H6 subtype virus. These results provide further evidence of the pivotal role of the live poultry market system of southern China in generating increased genetic diversity in influenza viruses in this region.  相似文献   

2.
The A/teal/Hong Kong/W312/97 (H6N1) influenza virus and the human H5N1 and H9N2 influenza viruses possess similar genes encoding internal proteins, suggesting that H6N1 viruses could become novel human pathogens. The molecular epidemiology and evolution of H6 influenza viruses were characterized by antigenic and genetic analyses of 29 H6 influenza viruses isolated from 1975 to 1981 and 1997 to 2000. Two distinct groups were identified on the basis of their antigenic characteristics. Phylogenetic analysis revealed that all H6N1 viruses isolated from terrestrial poultry in 1999 and 2000 are closely related to A/teal/Hong Kong/W312/97 (H6N1), and the nucleotide sequences of these viruses and of A/Hong Kong/156/97 (H5N1) were more than 96% homologous. The hemagglutinin (HA) of the 1999 and 2000 terrestrial viruses does not have multiple basic amino acids at the site of cleavage of HA1 to HA2; however, a unique insertion of aspartic acid in HA1 between positions 144 and 145 (H3 numbering) was found. The neuraminidase of these terrestrial H6N1 viruses has a deletion of 19 amino acids characteristic of A/Hong Kong/156/97 (H5N1). Evolutionary analysis suggested that these H6N1 viruses coevolved with A/quail/Hong Kong/G1/97-like H9N2 viruses and became more adapted to terrestrial poultry. These terrestrial 1999 and 2000 A/teal/Hong Kong/W312/97 (H6N1)-like viruses, along with the H9N2 viruses, could have been involved in the genesis of the pathogenic H5N1 influenza viruses of 1997. The presence of H6N1 viruses in poultry markets in Hong Kong that possess seven of the eight genes of the A/Hong Kong/156/97 (H5N1) virus raises the following fundamental questions relevant to influenza pandemic preparedness: could the pathogenic H5N1 virus reemerge and could the H6N1 viruses directly cross the species barrier to mammals?  相似文献   

3.
In 1997, an H5N1 influenza virus outbreak occurred in chickens in Hong Kong, and the virus was transmitted directly to humans. Because there is limited information about the avian influenza virus reservoir in that region, we genetically characterized virus strains isolated in Hong Kong during the 1997 outbreak. We sequenced the gene segments of a heterogeneous group of viruses of seven different serotypes (H3N8, H4N8, H6N1, H6N9, H11N1, H11N9, and H11N8) isolated from various bird species. The phylogenetic relationships divided these viruses into several subgroups. An H6N1 virus isolated from teal (A/teal/Hong Kong/W312/97 [H6N1]) showed very high (>98%) nucleotide homology to the human influenza virus A/Hong Kong/156/97 (H5N1) in the six internal genes. The N1 neuraminidase sequence showed 97% nucleotide homology to that of the human H5N1 virus, and the N1 protein of both viruses had the same 19-amino-acid deletion in the stalk region. The deduced hemagglutinin amino acid sequence of the H6N1 virus was most similar to that of A/shearwater/Australia/1/72 (H6N5). The H6N1 virus is the first known isolate with seven H5N1-like segments and may have been the donor of the neuraminidase and the internal genes of the H5N1 viruses. The high homology between the internal genes of H9N2, H6N1, and the H5N1 isolates indicates that these subtypes are able to exchange their internal genes and are therefore a potential source of new pathogenic influenza virus strains. Our analysis suggests that surveillance for influenza A viruses should be conducted for wild aquatic birds as well as for poultry, pigs, and humans and that H6 isolates should be further characterized.  相似文献   

4.
Live attenuated influenza vaccine (LAIV) candidates of the H7 subtype, A/Netherlands/219/03 (H7N7, NL03 ca) and A/chicken/British Columbia/CN-6/2004 (H7N3, BC04 ca), were evaluated for their receptor binding specificity and immunogenicity in ferrets. The BC04 ca virus exhibited α2,3-SA and α2,6-SA dual receptor binding preference while the NL03 ca virus preferentially bound to α2,3-SA. Substitution of the Q226 and G228 (Q-G) by the L226 and S228 (L-S) residues in the HA improved binding to α2,6-SA for NL03 ca. The vaccine viruses with L-S retained the attenuation phenotype. NL03 L-S ca replicated more efficiently than the original NL03 ca virus in the upper respiratory tract of ferrets, and induced higher levels of humoral and cellular immune responses. Prior vaccination with seasonal LAIV reduced H7-specific antibody responses, but did not reduce the H7N7 vaccine mediated protection against a heterologous H7N3 BC04 wt virus infection in ferrets. In addition, the H7N3 and H7N7 vaccine immunized ferret sera cross reacted with the newly emerged H7N9 virus. These data, in combination with the safety data from previously conducted Phase 1 studies, suggest that these vaccines may have a role in responding to the threat posed by the H7N9 virus.  相似文献   

5.
A live attenuated H7N7 candidate vaccine virus was generated by reverse genetics using the modified hemagglutinin (HA) and neuraminidase (NA) genes of highly pathogenic (HP) A/Netherlands/219/03 (NL/03) (H7N7) wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 ca (AA ca) (H2N2) virus. The reassortant H7N7 NL/03 ca vaccine virus was temperature sensitive and attenuated in mice, ferrets, and African green monkeys (AGMs). Intranasal (i.n.) administration of a single dose of the H7N7 NL/03 ca vaccine virus fully protected mice from lethal challenge with homologous and heterologous H7 viruses from Eurasian and North American lineages. Two doses of the H7N7 NL/03 ca vaccine induced neutralizing antibodies in serum and provided complete protection from pulmonary replication of homologous and heterologous wild-type H7 challenge viruses in mice and ferrets. One dose of the H7N7 NL/03 ca vaccine elicited an antibody response in one of three AGMs that was completely protected from pulmonary replication of the homologous wild-type H7 challenge virus. The contribution of CD8+ and/or CD4+ T cells to the vaccine-induced protection of mice was evaluated by T-cell depletion; T lymphocytes were not essential for the vaccine-induced protection from lethal challenge with H7 wt viruses. Additionally, passively transferred neutralizing antibody induced by the H7N7 NL/03 ca virus protected mice from lethality following challenge with H7 wt viruses. The safety, immunogenicity, and efficacy of the H7N7 NL/03 ca vaccine virus in mice, ferrets, and AGMs support the evaluation of this vaccine virus in phase I clinical trials.Highly pathogenic avian influenza (HPAI) is a disease of poultry that is caused by H5 or H7 avian influenza viruses and is associated with up to 100% mortality (2). Influenza A H7 subtype viruses from both Eurasian and North American lineages have resulted in more than 100 cases of human infection since 2002 in the Netherlands, Italy, Canada, the United Kingdom, and the United States. These cases include outbreaks of HPAI H7N7 virus in the Netherlands in 2003 that resulted in more than 80 cases of human infection and one fatality; HPAI H7N3 virus in British Columbia, Canada, in 2004 that resulted in two cases of conjunctivitis; a cluster of human infections of low-pathogenicity avian influenza (LPAI) H7N2 virus in the United Kingdom in 2007 that resulted in several cases of influenza-like illness and conjunctivitis; and a single case of respiratory infection in New York in 2003 (3-6, 17, 27).Due to an unprecedented geographic spread of H5 subtype viruses since 2003 and the continued occurrence of sporadic cases of H5N1 infections in humans, much emphasis has been placed on the pandemic threat posed by H5 subtype viruses. However, H7 subtype viruses also have significant pandemic potential. Humans are immunologically naïve to the H7 avian influenza viruses (16), and LPAI H7 subtype viruses circulating in domestic poultry and wild birds in Eurasia and North America have the potential to evolve and acquire an HP phenotype either by accumulating mutations or by recombination at the hemagglutinin (HA) cleavage site resulting in a highly cleavable HA that is a virulence motif in poultry (30, 33, 34). Recent work also suggests that contemporary North American lineage H7 subtype viruses, isolated in 2002 to 2003, are partially adapted to recognize α2-6-linked sialic acids, which are the receptors preferred by human influenza viruses and are preferentially found in the human upper respiratory tract (7). Moreover, coinfection and genetic reassortment of RNA genomes between H7 avian influenza viruses and human influenza viruses, including the seasonal H1N1 and H3N2 and pandemic H1N1 viruses, could result in the generation of reassortant viruses with the capacity to efficiently transmit among people and result in a pandemic. Domesticated birds may serve as important intermediate hosts for the transmission of wild-bird influenza viruses to humans, as may pigs, as evidenced by human infections with swine-origin 2009 pandemic H1N1 influenza virus throughout the world.Vaccination is the most effective method for the prevention of influenza. However, technical limitations result in delays in the rapid generation and availability of a strain-specific vaccine against an emerging pandemic virus. The emergence of antigenically distinct virus clades poses a substantial challenge for the design of vaccines against H5N1 viruses because of the possible need for clade-specific vaccines (1). Similar challenges are present for the generation of H7 subtype vaccine candidates, because antigenically distinct H7 subtype viruses, including North American lineage H7N2 and H7N3 and Eurasian lineage H7N7 and H7N3 viruses, have caused human disease. The successful control of H7 influenza virus in poultry has been achieved by stamping out and by vaccination of poultry (9). Vaccines for human use against both lineages of H7 influenza virus are under development, and candidate vaccines have been evaluated in preclinical and clinical studies (14, 23, 29, 42).We have previously analyzed the antigenic relatedness among H7 viruses from Eurasian and North American lineages using postinfection mouse and ferret sera (22). Among 10 H7 viruses tested, A/Netherlands/219/03 (H7N7) virus induced the most broadly cross-neutralizing antibodies (Abs) (22). Based on the phylogenetic relationships and its ability to induce broadly cross-neutralizing antibodies in mice and ferrets, we selected the A/Netherlands/219/03 (NL/03) (H7N7) virus from the Eurasian lineage for vaccine development. We used reverse genetics to generate a live attenuated cold-adapted (ca) H7N7 candidate vaccine virus bearing a modified HA, a wild-type (wt) neuraminidase (NA) gene from the NL/03 wt virus, and the six internal protein gene segments from the cold-adapted (ca) influenza A virus vaccine donor strain, A/Ann Arbor/6/60 ca (AA ca) (H2N2). The immunogenicity and protective efficacy against challenge with HP and LP H7 viruses from the Eurasian and North American lineages of the reassortant H7N7 NL03/AA ca vaccine virus were evaluated in mice, ferrets, and African green monkeys (AGMs).  相似文献   

6.
A live attenuated influenza A/Vietnam/1203/2004 (H5N1) vaccine virus (VN04 ca) has receptor binding specificity to α2,3-linked sialosides (α2,3SAL), and a single dose induces a minimal serum antibody response in mice and ferrets. In contrast, A/Hong Kong/213/2003 (H5N1) vaccine virus (HK03 ca) binds to both α2,6SAL and α2,3SAL and generates a stronger serum antibody response in animals. Among the 9 amino acids that differed between the two H5 HA1 proteins, several HK03-specific residues enabled the VN04 ca virus to bind to both α2,3SAL and α2,6SAL receptors, but only the removal of the 158N glycosylation, together with an S227N change, resulted in more-efficient viral replication in the upper respiratory tract of ferrets and an increased serum antibody response. However, the antibody response was HK03 strain specific and did not significantly cross-neutralize VN04 virus. A second approach was taken to adapt the H5N1 VN04 ca virus in MDCK cells to select HA variants with larger plaque morphology. Although a number of large-plaque-size HA variants with amino acid changes in the HA receptor binding region were identified, none of these mutations affected virus receptor binding preference and immunogenicity. In addition, the known receptor binding site changes, Q226L and G228S, were introduced into the HA protein of the VN04 ca virus. Only in conjunction with the removal of the 158N glycosylation did the virus replicate efficiently in the upper respiratory tract of ferrets and became more immunogenic, yet the response was also HK03 specific. Thus, the mask of the antigenic epitopes by 158N glycosylation at the HA globular head and its α2,3SAL binding preference of VN04 ca virus affect virus antigenicity and replication in the host, resulting in a lower antibody response.Influenza A viruses have the potential to cause pandemics of various severities. The emergence of new influenza virus strains to which the general population has low or no immunity, such as the 2009 swine-origin influenza A H1N1 viruses, will continue to challenge public health authorities and the scientific community to develop quick and efficient mitigation responses (18). Highly pathogenic avian influenza A (HPAI) H5N1 viruses pose a serious pandemic threat due to their virulence and high mortality in humans, and their increasingly expanding host reservoir and significant ongoing evolution could enhance their human-to-human transmissibility (8). Currently, the case fatality rate of HPAI H5N1 viruses in humans is estimated to be approximately 60% (30).Although HPAI H5N1 viruses are now endemic in several countries (2), direct transmission of influenza viruses from avian species to humans remains a relatively rare event. The hemagglutinin (HA) protein''s affinity for cell surface sialic acid-containing molecules is one of the determinants of influenza A virus host range restriction. Human and avian influenza virus isolates differ in their recognition of host cell receptors; human strains mainly bind α2,3-linked sialosides (α2,6SAL), whereas the avian strains have a high affinity to α2,3SAL (15, 32). The influenza pandemics of the last century have been suggested to result from switching of HA receptor-binding specificity from α2,3SAL to α2,6SAL receptors (6, 26, 31).The receptor-binding specificity of the HA protein can be influenced by several critical residues. For influenza H3 subtype viruses, substitutions of Q226L and G228S could completely reverse receptor-binding specificity from α2,3SAL to α2,6SAL (4, 21). For the H1 subtype viruses, the E190D and D225G residues switch virus receptor binding specificity from α2,3SAL to α2,6SAL for the 1918 pandemic H1N1 viruses (6, 25). However, based on glycan microarray analysis, the 190E and 225D residues cannot alter the HA binding preference from α2,3SAL to α2,6SAL for H5N1 viruses (26).Vaccination is considered a preferred approach to prevent influenza-related illness in the community. A pandemic influenza vaccine should stimulate protective immunity in the target population using the smallest amount of antigen possible, thus enabling availability of maximal vaccine doses. The inactivated H5N1 VN04 vaccines have been found to be poorly immunogenic in humans, and adjuvants are needed to enhance vaccine immunogenicity (13). Live attenuated influenza vaccines (LAIV) have several desirable attributes: the stimulation of a durable mucosal and systemic immunity, broad efficacy against homologous and drifted strains, and efficient production (17).Several H5N1 LAIV vaccines possessing a modified HA and neuraminidase (NA) of an H5N1 virus and the six internal protein gene segments (PB1, PB2, PA, NP, M, and NS) of the A/Ann Arbor/6/60 (H2N2) cold-adapted (AA ca) master donor virus were previously generated and evaluated for their immunogenicity and efficacy in mice and ferrets (29). A single dose of A/Vietnam/1203/2004 (VN04 ca) LAIV elicited very low levels of serum neutralizing antibodies against homologous and heterologous wild-type (wt) H5N1 viruses 4 weeks after administration to mice and ferrets. In contrast, a single dose of A/Hong Kong/213/2003 (H5N1) (HK03 ca) LAIV was more immunogenic (29). A specific amino acid residue at position 227 in the HK03 HA has been reported to be responsible for the greater immunogenicity of HK03 (9). VN04 and HK03 also differ in their receptor binding specificities. The VN04 HA mainly recognizes α2,3SAL, while the HK03 HA recognizes both α2,3SAL and α2,6SAL (7, 14, 22, 36). Sequence alignment of the two H5 HA proteins revealed nine amino acid differences in their HA1 region (9). The current analysis evaluates the impact of these amino acid differences on H5N1 VN ca vaccine strain replication and immunogenicity. In addition, adaptive mutations selected from MDCK passage of the H5N1 VN04 ca virus and introduction of known receptor binding sites were evaluated for their effect on antigenicity and immunogenicity of the H5N1 VN04 ca virus.  相似文献   

7.
8.
Human influenza is a seasonal disease associated with significant morbidity and mortality. The most effective means for controlling infection and thereby reducing morbidity and mortality is vaccination with a three inactivated influenza virus strains mixture, or by intranasal administration of a group of three different live attenuated influenza vaccine strains. Comparing to the inactivated vaccine, the attenuated live viruses allow better elicitation of a long-lasting and broader immune (humoral and cellular) response that represents a naturally occurring transient infection. The cold-adapted (ca) influenza A/AA/6/60 (H2N2) (AA ca) virus is the backbone for the live attenuated trivalent seasonal influenza vaccine licensed in the United States. Similarly, the influenza A components of live-attenuated vaccines used in Russia have been prepared as reassortants of the cold-adapted (ca) H2N2 viruses, A/Leningrad/134/17/57-ca (Len/17) and A/Leningrad/134/47/57-ca (Len/47) along with virulent epidemic strains. However, the mechanism of temperature-sensitive attenuation is largely elusive. To understand how modification at genetic level of influenza virus would result in attenuation of human influenza virus A/PR/8/34 (H1N1,A/PR8), we investigated the involvement of key mutations in the PB1 and/or PB2 genes in attenuation of influenza virus in vitro and in vivo. We have demonstrated that a few of residues in PB1 and PB2 are critical for the phenotypes of live attenuated, temperature sensitive influenza viruses by minigenome assay and real-time PCR. The information of these mutation loci could be used for elucidation of mechanism of temperature-sensitive attenuation and as a new strategy for influenza vaccine development.  相似文献   

9.
The pathogenesis of human influenza H5N1 virus infection remains poorly understood and controversial. Cytokine dysregulation in human infection has been hypothesized to contribute to disease severity. We developed in vitro cultures of mouse bone marrow derived macrophages (BMDMΦ) from C57BL/6N mouse to compare influenza A (H5N1 and H1N1) virus replication and pro-inflammatory cytokine and chemokine responses. While both H1N1 and H5N1 viruses infected the mouse bone marrow derived macrophages, only the H1N1 virus had showed evidence of productive viral replication from the infected cells. In comparison with human seasonal influenza H1N1 (A/HK/54/98) and mouse adapted influenza H1N1 (A/WSN/33) viruses, the highly pathogenic influenza H5N1 virus (A/HK/483/97) was a more potent inducer of the chemokine, CXCL 10 (IP-10), while there was not a clear differential TNF-α protein expression pattern. Although human influenza viruses rarely cause infection in mice without prior adaption, the use of in vitro cell cultures of primary mouse cells is of interest, especially given the availability of gene-defective (knock-out) mice for specific genes.  相似文献   

10.
Suguitan AL  Cheng X  Wang W  Wang S  Jin H  Lu S 《PloS one》2011,6(7):e21942
Priming immunization plays a key role in protecting individuals or populations to influenza viruses that are novel to humans. To identify the most promising vaccine priming strategy, we have evaluated different prime-boost regimens using inactivated, DNA and live attenuated vaccines in ferrets. Live attenuated influenza A/Vietnam/1203/2004 (H5N1) candidate vaccine (LAIV, VN04 ca) primed ferrets efficiently while inactivated H5N1 vaccine could not prime the immune response in seronegative ferrets unless an adjuvant was used. However, the H5 HA DNA vaccine alone was as successful as an adjuvanted inactivated VN04 vaccine in priming the immune response to VN04 ca virus. The serum antibody titers of ferrets primed with H5 HA DNA followed by intranasal vaccination of VN04 ca virus were comparable to that induced by two doses of VN04 ca virus. Both LAIV-LAIV and DNA-LAIV vaccine regimens could induce antibody responses that cross-neutralized antigenically distinct H5N1 virus isolates including A/HongKong/213/2003 (HK03) and prevented nasal infection of HK03 vaccine virus. Thus, H5 HA DNA vaccination may offer an alternative option for pandemic preparedness.  相似文献   

11.
The transmission of H9N2 influenza viruses to humans and the realization that the A/Hong Kong/156/97-like (H5N1) (abbreviated HK/156/97) genome complex may be present in H9N2 viruses in southeastern China necessitated a study of the distribution and characterization of H9N2 viruses in poultry in the Hong Kong SAR in 1999. Serological studies indicated that H9N2 influenza viruses had infected a high proportion of chickens and other land-based birds (pigeon, pheasant, quail, guinea fowl, and chukka) from southeastern China. Two lineages of H9N2 influenza viruses present in the live-poultry markets were represented by A/Quail/Hong Kong/G1/97 (Qa/HK/G1/97)-like and A/Duck/Hong Kong/Y280/97 (Dk/HK/Y280/97)-like viruses. Up to 16% of cages of quail in the poultry markets contained Qa/HK/G1/97-like viruses, while about 5% of cages of other land-based birds were infected with Dk/HK/Y280/97-like viruses. No reassortant between the two H9N2 virus lineages was detected despite their cocirculation in the poultry markets. Reassortant viruses represented by A/Chicken/Hong Kong/G9/97 (H9N2) were the major H9N2 influenza viruses circulating in the Hong Kong markets in 1997 but have not been detected since the chicken slaughter in 1997. The Qa/HK/G1/97-like viruses were frequently isolated from quail, while Dk/HK/Y280/97-like viruses were predominately associated with chickens. The Qa/HK/G1/97-like viruses were evolving relatively rapidly, especially in their PB2, HA, NP, and NA genes, suggesting that they are in the process of adapting to a new host. Experimental studies showed that both H9N2 lineages were primarily spread by the aerosol route and that neither quail nor chickens showed evidence of disease. The high prevalence of quail infected with Qa/HK/G1/97-like virus that contains six gene segments genetically highly related to HK/156/97 (H5N1) virus emphasizes the need for surveillance of mammals including humans.  相似文献   

12.
Highly pathogenic avian influenza H5N1 viruses have devastated the poultry industry in many countries of the eastern hemisphere. Occasionally H5N1 viruses cross the species barrier and infect humans, sometimes with a severe clinical outcome. When this happens, there is a chance of reassortment between H5N1 and human influenza viruses. To assess the potential of H5N1 viruses to reassort with contemporary human influenza viruses (H1N1, H3N2 and pandemic H1N1), we used an in vitro selection method to generate reassortant viruses, that contained the H5 hemagglutinin gene, and that have a replication advantage in vitro. We found that the neuraminidase and matrix gene segments of human influenza viruses were preferentially selected by H5 viruses. However, these H5 reassortant viruses did not show a marked increase in replication in MDCK cells and human bronchial epithelial cells. In ferrets, inoculation with a mixture of H5N1-pandemic H1N1 reassortant viruses resulted in outgrowth of reassortant H5 viruses that had incorporated the neuraminidase and matrix gene segment of pandemic 2009 H1N1. This virus was not transmitted via aerosols or respiratory droplets to naïve recipient ferrets. Altogether, these data emphasize the potential of avian H5N1 viruses to reassort with contemporary human influenza viruses. The neuraminidase and matrix gene segments of human influenza viruses showed the highest genetic compatibility with HPAI H5N1 virus.  相似文献   

13.

Background

Fatal human respiratory disease associated with influenza A subtype H5N1 has been documented in Hong Kong, and more recently in Vietnam, Thailand and Cambodia. We previously demonstrated that patients with H5N1 disease had unusually high serum levels of IP-10 (interferon-gamma-inducible protein-10). Furthermore, when compared with human influenza virus subtype H1N1, the H5N1 viruses in 1997 (A/Hong Kong/483/97) (H5N1/97) were more potent inducers of pro-inflammatory cytokines (e.g. tumor necrosis factor-a) and chemokines (e.g. IP-10) from primary human macrophages in vitro, which suggests that cytokines dysregulation may play a role in pathogenesis of H5N1 disease. Since respiratory epithelial cells are the primary target cell for replication of influenza viruses, it is pertinent to investigate the cytokine induction profile of H5N1 viruses in these cells.

Methods

We used quantitative RT-PCR and ELISA to compare the profile of cytokine and chemokine gene expression induced by H5N1 viruses A/HK/483/97 (H5N1/97), A/Vietnam/1194/04 and A/Vietnam/3046/04 (both H5N1/04) with that of human H1N1 virus in human primary alveolar and bronchial epithelial cells in vitro.

Results

We demonstrated that in comparison to human H1N1 viruses, H5N1/97 and H5N1/04 viruses were more potent inducers of IP-10, interferon beta, RANTES (regulated on activation, normal T cell expressed and secreted) and interleukin 6 (IL-6) in primary human alveolar and bronchial epithelial cells in vitro. Recent H5N1 viruses from Vietnam (H5N1/04) appeared to be even more potent at inducing IP-10 than H5N1/97 virus.

Conclusion

The H5N1/97 and H5N1/04 subtype influenza A viruses are more potent inducers of proinflammatory cytokines and chemokines in primary human respiratory epithelial cells than subtype H1N1 virus. We suggest that this hyper-induction of cytokines may be relevant to the pathogenesis of human H5N1 disease.  相似文献   

14.

Background

Avian influenza A (H7N9) virus has emerged recently and continues to cause severe disease with a high mortality rate in humans prompting the development of candidate vaccine viruses. Live attenuated influenza vaccines (LAIV) are 6:2 reassortant viruses containing the HA and NA gene segments from wild type influenza viruses to induce protective immune responses and the six internal genes from Master Donor Viruses (MDV) to provide temperature sensitive, cold-adapted and attenuated phenotypes.

Methodology/Principal Findings

LAIV candidate A/Anhui/1/2013(H7N9)-CDC-LV7A (abbreviated as CDC-LV7A), based on the Russian MDV, A/Leningrad/134/17/57 (H2N2), was generated by classical reassortment in eggs and retained MDV temperature-sensitive and cold-adapted phenotypes. CDC-LV7A had two amino acid substitutions N123D and N149D (H7 numbering) in HA and one substitution T10I in NA. To evaluate the role of these mutations on the replication capacity of the reassortants in eggs, the recombinant viruses A(H7N9)RG-LV1 and A(H7N9)RG-LV2 were generated by reverse genetics. These changes did not alter virus antigenicity as ferret antiserum to CDC-LV7A vaccine candidate inhibited hemagglutination by homologous A(H7N9) virus efficiently. Safety studies in ferrets confirmed that CDC-LV7A was attenuated compared to wild-type A/Anhui/1/2013. In addition, the genetic stability of this vaccine candidate was examined in eggs and ferrets by monitoring sequence changes acquired during virus replication in the two host models. No changes in the viral genome were detected after five passages in eggs. However, after ten passages additional mutations were detected in the HA gene. The vaccine candidate was shown to be stable in the ferret model; post-vaccination sequence data analysis showed no changes in viruses collected in nasal washes present at day 5 or day 7.

Conclusions/Significance

Our data indicate that the A/Anhui/1/2013(H7N9)-CDC-LV7A reassortant virus is a safe and genetically stable candidate vaccine virus that is now available for distribution by WHO to vaccine manufacturers.  相似文献   

15.
In Hong Kong in 1997, a highly lethal H5N1 avian influenza virus was apparently transmitted directly from chickens to humans with no intermediate mammalian host and caused 18 confirmed infections and six deaths. Strategies must be developed to deal with this virus if it should reappear, and prospective vaccines must be developed to anticipate a future pandemic. We have determined that unadapted H5N1 viruses are pathogenic in mice, which provides a well-defined mammalian system for immunological studies of lethal avian influenza virus infection. We report that a DNA vaccine encoding hemagglutinin from the index human influenza isolate A/HK/156/97 provides immunity against H5N1 infection of mice. This immunity was induced against both the homologous A/HK/156/97 (H5N1) virus, which has no glycosylation site at residue 154, and chicken isolate A/Ck/HK/258/97 (H5N1), which does have a glycosylation site at residue 154. The mouse model system should allow rapid evaluation of the vaccine’s protective efficacy in a mammalian host. In our previous study using an avian model, DNA encoding hemagglutinin conferred protection against challenge with antigenic variants that differed from the primary antigen by 11 to 13% in the HA1 region. However, in our current study we found that a DNA vaccine encoding the hemagglutinin from A/Ty/Ir/1/83 (H5N8), which differs from A/HK/156/97 (H5N1) by 12% in HA1, prevented death but not H5N1 infection in mice. Therefore, a DNA vaccine made with a heterologous H5 strain did not prevent infection by H5N1 avian influenza viruses in mice but was useful in preventing death.  相似文献   

16.

Background

The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1) highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus.

Methodology/Principal Findings

BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca) influenza viruses from 1977 or recombinant adenoviruses (rAd) expressing 1934 nucleoprotein (NP) and consensus matrix 2 (M2) (NP+M2-rAd). Antibodies against the M2 ectodomain (M2e) were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus.

Conclusion/Significance

Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic.  相似文献   

17.
Influenza H3N2 A viruses continue to circulate in swine and occasionally infect humans, resulting in outbreaks of variant influenza H3N2 [A(H3N2)v] virus. It has been previously demonstrated in ferrets that A(H3N2)v viruses transmit as efficiently as seasonal influenza viruses, raising concern over the pandemic potential of these viruses. However, A(H3N2)v viruses have not acquired the ability to transmit efficiently among humans, which may be due in part to existing cross-reactive immunity to A(H3N2)v viruses. Although current seasonal H3N2 and A(H3N2)v viruses are antigenically distinct from one another, historical H3N2 viruses have some antigenic similarity to A(H3N2)v viruses and previous exposure to these viruses may provide a measure of immune protection sufficient to dampen A(H3N2)v virus transmission. Here, we evaluated whether prior seasonal H3N2 influenza virus vaccination or infection affects virus replication and transmission of A(H3N2)v virus in the ferret animal model. We found that the seasonal trivalent inactivated influenza virus vaccine (TIV) or a monovalent vaccine prepared from an antigenically related 1992 seasonal influenza H3N2 (A/Beijing/32/1992) virus failed to substantially reduce A(H3N2)v (A/Indiana/08/2011) virus shedding and subsequent transmission to naive hosts. Conversely, ferrets primed by seasonal H3N2 virus infection displayed reduced A(H3N2)v virus shedding following challenge, which blunted transmission to naive ferrets. A higher level of specific IgG and IgA antibody titers detected among infected versus vaccinated ferrets was associated with the degree of protection offered by seasonal H3N2 virus infection. The data demonstrate in ferrets that the efficiency of A(H3N2)v transmission is disrupted by preexisting immunity induced by seasonal H3N2 virus infection.  相似文献   

18.
Deng YM  Caldwell N  Barr IG 《PloS one》2011,6(8):e23400

Background

Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance.

Methodology/Principal Findings

A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses.

Conclusions/Significance

In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.  相似文献   

19.
Since the outbreak in humans of an H5N1 avian influenza virus in Hong Kong in 1997, poultry entering the live-bird markets of Hong Kong have been closely monitored for infection with avian influenza. In March 1999, this monitoring system detected geese that were serologically positive for H5N1 avian influenza virus, but the birds were marketed before they could be sampled for virus. However, viral isolates were obtained by swabbing the cages that housed the geese. These samples, known collectively as A/Environment/Hong Kong/437/99 (A/Env/HK/437/99), contained four viral isolates, which were compared to the 1997 H5N1 Hong Kong isolates. Analysis of A/Env/HK/437/99 viruses revealed that the four isolates are nearly identical genetically and are most closely related to A/Goose/Guangdong/1/96. These isolates and the 1997 H5N1 Hong Kong viruses encode common hemagglutinin (H5) genes that have identical hemagglutinin cleavage sites. Thus, the pathogenicity of the A/Env/HK/437/99 viruses was compared in chickens and in mice to evaluate the potential for disease outbreaks in poultry and humans. The A/Env/HK/437/99 isolates were highly pathogenic in chickens but caused a longer mean death time and had altered cell tropism compared to A/Hong Kong/156/97 (A/HK/156/97). Like A/HK/156/97, the A/Env/HK/437/99 viruses replicated in mice and remained localized to the respiratory tract. However, the A/Env/HK/437/99 isolates caused only mild pathological lesions in these tissues and no clinical signs of disease or death. As a measure of the immune response to these viruses, transforming growth factor beta levels were determined in the serum of infected mice and showed elevated levels for the A/Env/HK/437/99 viruses compared to the A/HK/156/97 viruses. This study is the first to characterize the A/Env/HK/437/99 viruses in both avian and mammalian species, evaluating the H5 gene from the 1997 Hong Kong H5N1 isolates in a different genetic background. Our findings reveal that at least one of the avian influenza virus genes encoded by the 1997 H5N1 Hong Kong viruses continues to circulate in mainland China and that this gene is important for pathogenesis in chickens but is not the sole determinant of pathogenicity in mice. There is evidence that H9N2 viruses, which have internal genes in common with the 1997 H5N1 Hong Kong isolates, are still circulating in Hong Kong and China as well, providing a heterogeneous gene pool for viral reassortment. The implications of these findings for the potential for human disease are discussed.  相似文献   

20.
The cold-adapted, temperature sensitive and attenuated influenza master donor viruses A/Leningrad/134/17/57 (H2N2) and B/USSR/ 60/69 were used to generate the vaccine viruses to be included in live attenuated influenza vaccine. These vaccine viruses typically are 6:2 reassortant viruses containing the surface antigens hemagglutinin and neuraminidase of current wild type influenza A and influenza B viruses with the gene segments encoding the internal viral proteins, and conferring the cold-adapted, temperature sensitive and attenuated phenotype, being inherited from the master donor viruses. The 6:2 reassortant viruses were selected from co-infections between master donor virus and wild type viruses that theoretically may yield as many as 256 combinations of gene segments and thus 256 genetically different viruses. As the time to generate and isolate vaccine viruses is limited and because only 6:2 reassortant viruses are allowed as vaccine viruses, screening needs to be both rapid and unambiguous. The screening of the reassortant viruses by RT-PCRs using master donor virus and wild type virus specific primer sets was described to select both influenza A and influenza B 6:2 reassortant viruses to be used in seasonal and pandemic live attenuated vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号