首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although it is common for nestlings to exhibit a strong bias for fledging in the morning, the mechanisms underlying this behavior are not well understood. Avoiding predation risk has been proposed as a likely mechanism by a number of researchers. We used video surveillance records from studies of grassland birds nesting in North Dakota, Minnesota, and Wisconsin to determine the diel pattern of nest predation and fledging patterns of four ground‐nesting obligate grassland passerines (Grasshopper Sparrow (Ammodramus savannarum), Savannah Sparrow (Passerculus sandwichensis), Bobolink (Dolichonyx oryzivorus), and Eastern Meadowlark (Sturnella magna)). We used the nest predation pattern as a surrogate for predation activity to test whether nestlings minimized predation risk by avoiding fledging when predation activity was high and preferentially fledging when predation risk was low. Predation activity was significantly lower starting 3 hr before sunrise and ending 3 hr after sunrise, followed by a transition to a period of significantly higher activity lasting for 4 hr, before declining to an average activity level for the rest of the diel period. There was little evidence that the four grassland bird species avoided fledging during the high‐risk period and Savannah Sparrow fledged at higher rates during that period. All four species had hours during the low‐risk period where they fledged at higher rates, but only Grasshopper Sparrow fledged preferentially during that period. Bobolink and Eastern Meadowlark had multiple hours with high fledging rates throughout the daytime period, resulting in no relationship between probability of fledging and predation risk. Given the species variability in fledging pattern seen in our study, it is unlikely that there is a universal response to any driver that affects time of fledging. Further study is needed to understand the complex interplay between species ecology and drivers such as physiology, energetics, and predation in affecting grassland bird fledging behavior.  相似文献   

2.
KAREL WEIDINGER 《Ibis》2009,151(2):352-360
I used time-lapse videotaping to identify predators of open songbird nests in fragmented deciduous woodland (nine plots, 2–10 ha each) in the Czech Republic from 2002 to 2006. I documented 22 species of predators at 171 nests of 13 species (mainly Blackcap Sylvia atricapilla , Song Thrush Turdus philomelos , Common Blackbird Turdus merula , Yellowhammer Emberiza citrinella and Chaffinch Fringilla coelebs ). The main predators were Pine Marten Martes martes (37% of 178 predation events), Jay Garrulus glandarius (29%), Buzzard Buteo buteo (7%) and Great Spotted Woodpecker Dendrocopos major (7%); mammals accounted for 48% of total predation. At least 3% of nests were depredated by multiple predators. In spite of their local abundance, Hooded Crows Corvus cornix did not present a serious threat for shrub nesting songbirds (< 1% of total predation). No predation by mice was recorded, suggesting that their importance has been overestimated in artificial nest studies. The proportional species composition of predators depended on which species occupied the monitored nest and location (study plot), but not on the year or the time of season. Corvids and raptors accounted for a relatively larger percentage of total predation of small ('warblers') and large ('thrushes') prey species, respectively, whereas carnivores were important predators of all prey species. Active nests of thrushes were only rarely robbed by Jays (< 4% of 52 events), presumably due to parental nest defence. Predation by woodpeckers was spatially clumped, probably due to individual foraging specialization. Predation by the other major predators was documented on most/all study plots.  相似文献   

3.
Nesting birds must provide a thermal environment sufficient for egg development while also meeting self‐maintenance needs. Many birds, particularly those with uniparental incubation, achieve this balance through periodic incubation recesses, during which foraging and other self‐maintenance activities can occur. However, incubating birds may experience disturbances such as predator or human activity which interrupt natural incubation patterns by compelling them to leave the nest. We characterized incubating mallard Anas platyrhynchos and gadwall Mareca strepera hens’ responses when flushed by predators and investigators in Suisun Marsh, California, USA. Diurnal incubation recesses initiated by investigators approaching nests were 63% longer than natural diurnal incubation recesses initiated by the hen (geometric mean: 226.77 min versus 142.04 min). Nocturnal incubation recesses, many of which were likely the result of predators flushing hens, were of similar duration regardless of whether the nest was partially depredated during the event (115.33 [101.01;131.68] minutes) or not (119.62 [111.96;127.82] minutes), yet were 16% shorter than natural diurnal incubation recesses. Hens moved further from the nest during natural diurnal recesses or investigator‐initiated recesses than during nocturnal recesses, and the proportion of hen locations recorded in wetland versus upland habitat during recesses varied with recess type (model‐predicted means: natural diurnal recess 0.77; investigator‐initiated recess 0.82; nocturnal recess 0.31). Hens were more likely to take a natural recess following an investigator‐initiated recess earlier that same day than following a natural recess earlier that same day, and natural recesses that followed an investigator‐initiated recess were longer than natural recesses that followed an earlier natural recess, suggesting that hens may not fulfill all of their physiological needs during investigator‐initiated recesses. We found no evidence that the duration of investigator‐initiated recesses was influenced by repeated visits to the nest, whether by predators or by investigators, and trapping and handling the hen did not affect investigator‐initiated recess duration unless the hen was also fitted with a backpack‐harness style GPS–GSM transmitter at the time of capture. Hens that were captured and fitted with GPS–GSM transmitters took recesses that were 26% longer than recesses during which a hen was captured but a GPS–GSM transmitter was not attached. Incubation interruptions had measurable but limited and specific effects on hen behavior.  相似文献   

4.
We studied whether the presence of breeding kestrels (Falco tinnunculus) affected nest predation and breeding habitat selection of curlews (Numenius arquata) on an open flat farmland area in western Finland. We searched for nests of curlews from an area of 6 km2 during 1985–1993. For each nest found, we recorded the fate of the nest, and the distance to the nearest kestrel nest and to the nearest perch. We measured the impact of breeding kestrels on nest predation by constructing artificial curlew nests in the vicinity of ten kestrel nests in 1993. Curlew nests were closer to kestrel nests than expected from random distribution, eventhough kestrels fed on average 5.5% of curlew chick production. Predation risk by kestrels was lower than predation risk by corvids and other generalist predators, which predated 9% of curlew nests surviving farming practices and an unknown proportion of chicks. Artificial nest experiment showed that nest predation was lower close to kestrel nests than further away suggesting that the breeding association of curlews and kestrels was a behavioural adaptation against nest predation. Thus, the presence of a predator may sometimes be beneficial to prey, and prey animals have behavioural adaptations to these situations.  相似文献   

5.
Nest predation can significantly reduce hatchling recruitment in sea turtle populations. We examined 20 yr of data from Canaveral National Seashore, Florida, which has pristine and altered beaches. We used chi-squared test to determine if secondary predation events were related to the nests' primary predation events, and proportional hazard regression analysis to determine the relative risk of individual nest predation. To determine if human beach use and nest predation risk were spatially or temporally linked, we ranked human beach use and examined predation frequency across all screened and marked nests. We found that once a nest has experienced predation it has an increased likelihood of experiencing a subsequent predation event when compared to other nests on the beach. Primary and multiple predation events occurred with greater frequency in limited beach use areas and with lowest frequency in moderate use areas. Predation risk decreased by an average of 29.5% from 2000 to 2008, relative to the initial year of study. Nests deposited mid-season were 9.8% more likely to be predated than early or late season nests. We conclude that where anti-nest predator management efforts are required but restricted (e.g., by funds, available personnel, or multiple management goals) resources should be concentrated to protect mid-season nests and those in limited access areas, if enhancing hatchling numbers is a management goal. © 2012 The Wildlife Society.  相似文献   

6.
Increasing nest survival by excluding predators is a goal of many bird conservation programs. However, new exclosure projects should be carefully evaluated to assess the potential risks of disturbance. We tested the effectiveness of predator exclosure fences (hereafter, fences) for nests of critically endangered Florida Grasshopper Sparrows (Ammodramus savannarum floridanus) at a dry prairie site (Three Lakes; 2015–2018) and a pasture site (the Ranch; 2015–2016) in Osceola County, Florida, USA. We installed fences at nests an average of 8 days after the start of incubation, and nest abandonment after fence installation was rare (2 of 149 installations). Predation was the leading cause of failure for unfenced nests at both sites (48–73%). At Three Lakes, nest cameras revealed that mammals and snakes were responsible for 61.5% and 38.5% of predation events, respectively, at unfenced nests. Fences reduced the daily probability of predation (0.016 for fenced nests vs. 0.074 for unfenced nests). The probability that a fenced nest would survive from discovery to fledging was more than double that of unfenced nests (60.4% vs. 27.7%). However, we found no difference in daily nest survival at the Ranch between the year before nests were fenced (2015; 0.874) and the year when all but one nest were fenced (2016; 0.867) because red imported fire ants (Solenopsis invicta) were responsible for 86% of predation events at fenced nests at the Ranch. The use of cameras at fenced nests revealed that site‐specific differences in nest predators explained variation in fence efficiency between sites. Our fence design may be useful for other species of grassland birds, but site‐specific predator communities and species‐specific response of target bird species to fences should be assessed before installing fences at other sites.  相似文献   

7.
Tomasz Weso&#;owski 《Ibis》2002,144(4):593-601
A proposal that nest predation is the most important selective pressure shaping nest-site use of Marsh Tits Parus palustris was checked in a long-term study (almost 500 nests) carried out in the Białowieża National Park (eastern Poland) in primeval conditions, where the birds breed in natural holes and their nests are at risk from a variety of predators. It was predicted that predation rates would depend on hole attributes, so that Marsh Tits should use the most secure holes. Predation was responsible for 70% of total nest losses. Predation risk depended on hole attributes. Nests in dead wood were predated significantly more often than those in live wood. Nests in old woodpecker holes were predated more frequently than nests in holes of other origin, and nests situated closer to the entrance were more at risk than ones further from it. The entrance size did not influence overall predation risk, but small entrance size was important in preventing access by larger predators. These differences can account for the very rare use of holes in dead wood or of woodpecker holes, the fact that they nest in holes with small entrances and relatively far from the entrance. It is concluded that the patterns of nest-site use found in this species are best explained as anti-predator adaptations, which have evolved and are maintained by the pressure of nest predators. This study also indicates the possible limits of, and constraints on, these adaptations.  相似文献   

8.
Many passerine bird populations, particularly those that have open‐cup nests, are in decline in agricultural landscapes. Current theory suggests that an increase in habitat generalist predators in response to landscape change is partially responsible for these declines. However, empirical tests have failed to reach a consensus on how and through what mechanisms landscape change affects nest predation. We tested one hypothesis, the Additive Predation Model, with an artificial nest experiment in fragmented landscapes in southern Queensland, Australia. We employed structural equation modelling of the influence of the relative density of woodland and habitat generalist predators and landscape features at the nest, site, patch and landscape scales on the probability of nest predation. We found little support for the Additive Predation Model, with no significant influence of the density of woodland predators on the probability of nest predation, although landscape features at different spatial scales were important. Within woodlands fragmented by agriculture in eastern Australia, the presence of noisy miner colonies appears to influence ecological processes important for nest predation such that the Additive Predation Model does not hold. In the absence of colonies of the aggressive native bird, the noisy miner, the influence of woodland predators on the risk of artificial nest predation was low compared with that of habitat generalist predators. Outside noisy miner colonies, we found significant edge effects with greater predation rates for artificial nests within woodland patches located closer to the agricultural matrix. Furthermore, the density of habitat generalist predators increased with the extent of irrigated land‐use, suggesting that in the absence of noisy miner colonies, nest predation increases with land‐use intensity at the landscape scale.  相似文献   

9.
Ground-nesting species are vulnerable to a wide range of predators and often experience very high levels of nest predation. Strategies to reduce nest vulnerability can include concealing nests in vegetation and/or nesting in locations in which nests and eggs are camouflaged and less easy for predators to locate. These strategies could have important implications for the distribution of ground-nesting species and the success rates of nests in areas with differing vegetation structure. However, the factors influencing the success of nest concealment and camouflage strategies in ground-nesting species are complex. Here we explore the effects of local vegetation structure and extent of nest concealment on nest predation rates in a range of ground-nesting, sympatric wader species with differing nest concealment strategies (open-nest species: Oystercatcher Haematopus ostralegus, Golden Plover Pluvialis apricaria and Whimbrel Numenius phaeopus; concealed-nest species: Black-tailed Godwit Limosa limosa, Redshank Tringa totanus and Snipe Gallinago gallinago) in south Iceland, in landscapes that comprise substantial variability in vegetation structure at a range of scales. We monitored 469 nests of these six wader species in 2015 and 2016 and ~40% of these nests were predated. Nest predation rates were similar for open-nest and concealed-nest species and did not vary with vegetation structure in the surrounding landscape, but nest-concealing species were ~10% more likely to have nests predated when they were poorly concealed, and the frequency of poorly concealed nests was higher in colder conditions at the start of the breeding season. For concealed-nest species, the reduced capacity to hide nests in colder conditions is likely to reflect low rates of vegetation growth in such conditions. The ongoing trend for warmer springs at subarctic latitudes could result in more rapid vegetation growth, with consequent increases in the success rates of early nests of concealed-nest species. Temperature-related effects on nest concealment from predators could thus be an important mechanism through which climate change affecting vegetation could have population-level impacts on breeding birds at higher latitudes.  相似文献   

10.
Over the past few decades, the wild boar has been undergoing an expansion in Europe, which may have negatively affected small game populations and particularly red-legged partridges. We aim to evaluate the red-legged partridge nest predation by wild boar at high boar abundances by placing artificial nests in nine big game estates. Predation rates were compared between nests placed in fenced controlled plots with no wild boar access (but accessible to other predators) and open plots in which the wild boar gains access. The proportion of nests and eggs predated was significantly lower in wild boar exclusion areas, recording a predation rate of 50 % for the nests and 38 % for the eggs in these areas, whereas in the presence of wild boar, the predation rate was 80 % for the nests and 58 % for the eggs. Moreover, the wild boar was identified as the main nest predator in unfenced areas, accounting for 36 and 48 % of the predated nests and eggs respectively. This study sheds light on the wild boar predation on nests of the red-legged partridges.  相似文献   

11.
Åke Berg 《Oecologia》1996,107(3):343-346
Predation rates on artificial wader nests, solitary curlew (Numenius arquata) and lapwing (Vanellus vanellus) nests and lapwing nests in colonies were studied on a farmland site in central Sweden. Predation rates were highest on artificial wader nests, intermediate on solitary curlew and lapwing nests and lowest on lapwing nests in colonies, probably because of active defence of adults at real nests and/or because of selection of nest sites with lower predation risk by breeding birds. A comparison of nests close to (50 m) and far away from (200 m) forest edges revealed no increased predation risk close to edges for any of the studied nest types. Predation risk changed during the season for artificial nests (highest in the middle of May), while predation rates on lapwing and curlew nests were more stable. Artificial nests seem to be inappropriate for measuring actual predation rates and temporal differences in predation rates on real nests, but they might be suitable for use as an index of spatial differences.  相似文献   

12.
Nest‐site characteristics are thought to play an important role in reproductive performance in birds (e.g., influencing reproductive success and predation risk). Nest‐site characteristics such as concealment may be particularly critical at high elevation where nests are exposed to challenging environmental conditions. In this study, we conducted both conventional and phylogenetically controlled analyses to investigate whether nest concealment affected several reproductive traits across 21 sympatric bird species living on Tibet Plateau (3,400 m altitude). Qualitatively equivalent results were reached in analyses, regardless of phylogenetic controls. We found that clutch size, incubation period, nestling period, and nest success were strongly and positively associated with nest concealment across species. Our study addressed such a high‐elevation bird community that is lacking in the previous studies. This study adds to theory that while there are a few exceptions, overall evidence supports a positive effect of nest concealment on reproductive performance across coexisting alpine species.  相似文献   

13.
  1. There is growing evidence that prey perceive the risk of predation and alter their behavior in response, resulting in changes in spatial distribution and potential fitness consequences. Previous approaches to mapping predation risk across a landscape quantify predator space use to estimate potential predator‐prey encounters, yet this approach does not account for successful predator attack resulting in prey mortality. An exception is a prey kill site that reflects an encounter resulting in mortality, but obtaining information on kill sites is expensive and requires time to accumulate adequate sample sizes.
  2. We illustrate an alternative approach using predator scat locations and their contents to quantify spatial predation risk for elk (Cervus canadensis) from multiple predators in the Rocky Mountains of Alberta, Canada. We surveyed over 1300 km to detect scats of bears (Ursus arctos/U. americanus), cougars (Puma concolor), coyotes (Canis latrans), and wolves (C. lupus). To derive spatial predation risk, we combined predictions of scat‐based resource selection functions (RSFs) weighted by predator abundance with predictions that a predator‐specific scat in a location contained elk. We evaluated the scat‐based predictions of predation risk by correlating them to predictions based on elk kill sites. We also compared scat‐based predation risk on summer ranges of elk following three migratory tactics for consistency with telemetry‐based metrics of predation risk and cause‐specific mortality of elk.
  3. We found a strong correlation between the scat‐based approach presented here and predation risk predicted by kill sites and (r = .98, p < .001). Elk migrating east of the Ya Ha Tinda winter range were exposed to the highest predation risk from cougars, resident elk summering on the Ya Ha Tinda winter range were exposed to the highest predation risk from wolves and coyotes, and elk migrating west to summer in Banff National Park were exposed to highest risk of encountering bears, but it was less likely to find elk in bear scats than in other areas. These patterns were consistent with previous estimates of spatial risk based on telemetry of collared predators and recent cause‐specific mortality patterns in elk.
  4. A scat‐based approach can provide a cost‐efficient alternative to kill sites of quantifying broad‐scale, spatial patterns in risk of predation for prey particularly in multiple predator species systems.
  相似文献   

14.
There is concern that predation of Lapwing Vanellus vanellus nests may create additional pressure on declining populations of this species in Europe. At seven sites in England and Wales, daily nest predation rates on 1,390 nests were related to variables using Generalised Linear Mixed Models. The strongest predictor was Lapwing nest density (number of nests within 100 m): predation rates declined as nest density increased. Since nocturnal species, probably mammals, have been identified as the major predators of Lapwing nests at these sites, these results suggest that Lapwings are able to deter mammalian predators or may settle to nest at high densities in areas with low predation pressure. At the site level, there was no relationship between Lapwing nesting density and fox density, and a positive relationship with Carrion Crow Corvus corone nesting density. There was a weaker effect of distance to field boundary: nests closer to boundaries were more likely to be predated. Weak interactive effects between crow density and both nest visibility and distance to vantage point were identified in models using a reduced subset of nests. These were counter-intuitive, did not persist in the larger data set, and do not have obvious explanations. If Lapwings nesting at high density are able to deter predators, there are implications for land management. Smaller areas could be managed within potential breeding habitat to encourage Lapwings to nest in dense colonies. Selection of larger fields for such management, where nests could be located far from the field boundary should improve the value of such measures.  相似文献   

15.
Predators are a particularly critical component of habitat quality, as they affect survival, morphology, behavior, population size, and community structure through both consumptive and non‐consumptive effects. Non‐consumptive effects can often exceed consumptive effects, but their relative importance is undetermined in many systems. Our objective was to determine the consumptive and non‐consumptive effects of a predaceous aquatic insect, Notonecta irrorata, on colonizing aquatic beetles. We tested how N. irrorata affected survival and habitat selection of colonizing aquatic beetles, how beetle traits contributed to their vulnerability to predation by N. irrorata, and how combined consumptive and non‐consumptive effects affected populations and community structure. Predation vulnerabilities ranged from 0% to 95% mortality, with size, swimming, and exoskeleton traits generating species‐specific vulnerabilities. Habitat selection ranged from predator avoidance to preferentially colonizing predator patches. Attraction of Dytiscidae to N. irrorata may be a natural ecological trap given similar cues produced by these taxa. Hence, species‐specific habitat selection by prey can be either predator‐avoidance responses that reduce consumptive effects, or responses that magnify predator effects. Notonecta irrorata had both strong consumptive and non‐consumptive effects on populations and communities, while combined effects predicted even more distinct communities and populations across patches with or without predators. Our results illustrate that an aquatic invertebrate predator can have functionally unique consumptive effects on prey, attracting and repelling prey, while prey have functionally unique responses to predators. Determining species‐specific consumptive and non‐consumptive effects is important to understand patterns of species diversity across landscapes.  相似文献   

16.
Nest predation is one of the most significant limitations for successful breeding of tropical passerines. Thus, parental strategies may include choosing appropriate nest sites and behaving in ways that minimize predation. Habitat characteristics that may influence nest success include degree of nest concealment, proximity to habitat edge, plant architecture as well as several others cited in the literature. However, few studies have examined display behavior as a factor that could also influence nest survival. We experimentally tested whether sexual motor displays served as a cue for visually oriented predators to locate artificial nests in a population of blue‐black grassquits Volatinia jacarina, a Neotropical passerine that exhibits a complex sexual display and is subjected to elevated rates of nest predation. We also evaluated the effect of nest substrate on survival. Predation rate was higher for nests within territories of displaying males relative to areas without displaying males and for nests placed in shrubs relative to grasses. Predation increased sharply in the third experimental replicate, at the end of the breeding season, which suggests that predators may develop a search image for nests or may become more abundant during specific periods of the season. Avian predators appear to be the most important nest predators. Results suggest that there may be a trade‐off between the increase in fitness derived from sexual displays of males to attract potential mates and the decrease owing to predation of active nests within their territories.  相似文献   

17.
Nest material kleptoparasitism likely evolved in birds to reduce the cost of searching for and collecting material themselves. Although nest material kleptoparasitism has been reported commonly in colonially nesting species, reports for solitary breeding species are infrequent, especially for neotropical migratory species. Here, we report potential and actual nest material kleptoparasitism in the Worm‐eating Warbler (Helmitheros vermivorum). We deployed video camera systems at passerine nests (n = 81) in east‐central Arkansas during summers 2011–2012. In one video, we observed a Worm‐eating Warbler stealing nesting material from a Hooded Warbler (Setophaga citrina) nest. One day later, we later observed a Worm‐eating Warbler landing within 0.5 m of the same warbler nest when the female was incubating, which possibly deterred a second theft of nesting material. In a third video recording, we observed another Worm‐eating Warbler landing within 1 m of an Indigo Bunting (Passerina cyanea) nest. As far as we could determine, neither of these latter two nest visits resulted in nest material kleptoparasitism. Potential benefits of nest material kleptoparasitism include reduced competition for limited nest materials, easy access to suitable material, reduced travel distance, and reduction of nest predation risk; however, costs include risk of attack by host or introducing parasites to one''s nest. Importantly, this behavior could ultimately affect the behavioral and life history evolution of a species. We suggest further work should be conducted to determine the prevalence of nest material kleptoparasitism in Worm‐eating Warblers and other solitary breeding passerines, including efforts to quantify the benefits and costs of this behavior.  相似文献   

18.
Predation is the main cause of nest failure among birds and, therefore, a strong selective agent. To fully understand patterns of nest predation, determining the identities of nest predators is crucial. Information about nest predators in the Neotropics, however, is largely anecdotal and not easily accessible in the literature. Our objective was to search the literature and compile a list of the known predators of nests in the Neotropics. We identified 256 species belonging to 67 families of birds, reptiles, mammals, and arthropods as nest predators. Families with at least 10 species of identified nest predators included Colubridae, Accipitridae, Corvidae, Ramphastidae, Falconidae, Furnariidae, Icteridae, and Didelphidae. Species in the first five of these families, plus the family Cebidae, predated nests of at least 30 species of birds. Many species not included on our list are also likely nest predators, e.g., 79 species identified as nest predators in the Nearctic that also occur in the Neotropics, but have not yet been confirmed as predators there. Increased use of video technology in the future should lead to an increase in the numbers of nest predators identified, particularly those that are nocturnal. By determining which species on our list occur in a given study area, researchers can now consider the likely nest predators in their study areas when designing hypotheses and conservation plans.  相似文献   

19.
Predation is the leading cause of nest failure for most birds. Thus, for ornithologists interested in the causes and consequences of variation in nest success, knowing the identity and understanding the behavior of dominant nest predators is likely to be important. Video documentation of nests has shown that snakes are frequent predators. Here we reviewed 53 North American studies that used nest cameras and used these data to identify broad patterns in snake predation. Snakes accounted for 26% (range: 0–90%) of recorded predation events, with values exceeding 35% in a third of studies. Snakes were more frequent nest predators at lower latitudes and less frequent in forested habitat relative to other nest predators. Although 12 species of snakes have been identified as nest predators, ratsnakes Elaphe obsoleta, corn snakes E. guttata and fox snakes E. vulpina were the most frequent, accounting for > 70% of all recorded nest predation events by snakes and have been documented preying on nests in 30–65% of studies conducted within their geographic ranges. Endotherm‐specialist snakes (Elaphe and Pituophis genera) were more likely to depredate nests in forests and the canopy relative to other snakes, due to their affinity for edge habitat. Predation by only ratsnakes and corn snakes was predominantly nocturnal and only ratsnakes were more likely to prey on nests during the nestling stage. Snakes were not identified to species in over 30% of predation events, underlining the need for more complete reporting of results. A review of research to date suggests the best approach to investigating factors that bring snakes and nests into contact involves combining nesting studies with radio tracking of locally important snake nest predators.  相似文献   

20.
ABSTRACT.   Nest predation is often the primary cause of nest failure for passerines. Despite this, little is known about predation rates and the nest predators of birds in the tropics. I used video cameras to monitor seven Lance-tailed Manakin ( Chiroxiphia lanceolata ) nests on Isla Boca Brava, Panamá. One nest fledged young and six nests failed due to predation. I recorded five predation events involving four avian predators and one mammalian predator. Crested Oropendolas ( Psarocolius decumanus ) predated two nests and a Roadside Hawk ( Buteo magnirostris ) and a Black-chested Jay ( Cyanocorax affinis ) each predated one. The mammalian predator was a common opossum ( Didelphis marsupialis ). All avian predation was diurnal; the mammalian predation was nocturnal. My results suggest that tropical birds are subject to a diverse suite of nest predators, and that avian predators may be an important cause of nest failure at my study site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号