首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predators are a particularly critical component of habitat quality, as they affect survival, morphology, behavior, population size, and community structure through both consumptive and non‐consumptive effects. Non‐consumptive effects can often exceed consumptive effects, but their relative importance is undetermined in many systems. Our objective was to determine the consumptive and non‐consumptive effects of a predaceous aquatic insect, Notonecta irrorata, on colonizing aquatic beetles. We tested how N. irrorata affected survival and habitat selection of colonizing aquatic beetles, how beetle traits contributed to their vulnerability to predation by N. irrorata, and how combined consumptive and non‐consumptive effects affected populations and community structure. Predation vulnerabilities ranged from 0% to 95% mortality, with size, swimming, and exoskeleton traits generating species‐specific vulnerabilities. Habitat selection ranged from predator avoidance to preferentially colonizing predator patches. Attraction of Dytiscidae to N. irrorata may be a natural ecological trap given similar cues produced by these taxa. Hence, species‐specific habitat selection by prey can be either predator‐avoidance responses that reduce consumptive effects, or responses that magnify predator effects. Notonecta irrorata had both strong consumptive and non‐consumptive effects on populations and communities, while combined effects predicted even more distinct communities and populations across patches with or without predators. Our results illustrate that an aquatic invertebrate predator can have functionally unique consumptive effects on prey, attracting and repelling prey, while prey have functionally unique responses to predators. Determining species‐specific consumptive and non‐consumptive effects is important to understand patterns of species diversity across landscapes.  相似文献   

2.
3.
Novel predator–prey interactions can contribute to the invasion success of non‐native predators. For example, native prey can fail to recognize and avoid non‐native predators due to a lack of co‐evolutionary history and cue dissimilarity with native predators. This might result in a competitive advantage for non‐native predators. Numerous lady beetle species were globally redistributed as biological control agents against aphids, resulting in novel predator–prey interactions. Here, we investigated the strength of avoidance behavior of the pea aphid (Acyrthosiphon pisum) toward chemical cues of native lady beetles and non‐native Asian Harmonia axyridis and European Coccinella septempunctata and Hippodamia variegata in North America, hypothesizing that cues of non‐native lady beetles induce weaker avoidance behavior than cues of co‐evolved native lady beetles. Additionally, we compared aphid consumption of lady beetles, examining potential predation advantages of non‐native lady beetles. Finally, we compared cue avoidance behavior between North American and European pea aphid populations and aphid consumption of native and non‐native lady beetles in North America and Europe. In North America, pea aphids avoided chemical cues of all ladybeetle species tested, regardless of their origin. In contrast to pea aphids in North America, European pea aphids did not avoid cues of the non‐native H. axyridis. The non‐native H. axyridis and C. septempunctata were among the largest and most voracious lady beetle species tested, on both continents. Consequently, in North America non‐native lady beetle species might have a competitive advantage on shared food resources due to their relatively large body size, compared to several native American lady beetle species. In Europe, however, non‐native H. axyridis might benefit from missing aphid cue avoidance as well as a large body size. The co‐evolutionary time gap between the European and North American invasion of H. axyridis likely explains the intercontinental differences in cue avoidance behavior and might indicate evolution in aphids toward non‐native predators.  相似文献   

4.
Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic organisms such as microalgae, cladocerans and rotifers, which frequently dominate freshwater plankton communities, meet these requirements. Multiple clonal lines can coexist within each species over extended periods, until either fixation occurs or a sexual phase reshuffles the genetic material. When clones differ in traits affecting interspecific interactions, within-species clonal dynamics can have major effects on the population dynamics. We first consider a simple predator–prey system with two prey genotypes, parametrized with data from a well-studied experimental system, and explore how the extent of differences in defence against predation within the prey population determine dynamic stability versus instability of the system. We then explore how increased potential for evolution affects the community dynamics in a more general community model with multiple predator and multiple prey genotypes. These examples illustrate how microevolutionary ‘details’ that enhance or limit the potential for heritable phenotypic change can have significant effects on contemporaneous community-level dynamics and the persistence and coexistence of species.  相似文献   

5.
Climate change and fisheries exploitation are dramatically changing the abundances, species composition, and size spectra of fish communities. We explore whether variation in ‘abundance size spectra’, a widely studied ecosystem feature, is influenced by a parameter theorized to govern the shape of size‐structured ecosystems—the relationship between the sizes of predators and their prey (predator–prey mass ratios, or PPMRs). PPMR estimates are lacking for avast number of fish species, including at the scale of trophic guilds. Using measurements of 8128 prey items in gut contents of 97 reef fish species, we established predator–prey mass ratios (PPMRs) for four major trophic guilds (piscivores, invertivores, planktivores, and herbivores) using linear mixed effects models. To assess the theoretical predictions that higher community‐level PPMRs leads to shallower size spectrum slopes, we compared observations of both ecosystem metrics for ~15,000 coastal reef sites distributed around Australia. PPMRs of individual fishes were remarkably high (median ~71,000), with significant variation between different trophic guilds (~890 for piscivores; ~83,000 for planktivores), and ~8700 for whole communities. Community‐level PPMRs were positively related to size spectrum slopes, broadly consistent with theory, however, this pattern was also influenced by the latitudinal temperature gradient. Tropical reefs showed a stronger relationship between community‐level PPMRs and community size spectrum slopes than temperate reefs. The extent that these patterns apply outside Australia and consequences for community structure and dynamics are key areas for future investigation.  相似文献   

6.
Both predation and individual variation in life history traits influence population dynamics. Recent results from laboratory predator–prey systems suggest that differences between individuals can also influence predator–prey dynamics when different genotypes experience different predation-associated mortalities. Despite the growing number of studies in this field, there is no synthesis identifying the overall importance of the interactions between predation and individual heterogeneity and their role in shaping the dynamics of free-ranging populations of vertebrates. We aim to fill this gap with a review that examines how individual variability in prey susceptibility, in predation costs, in predator selectivity, and in predatory performance, might influence prey population dynamics. Based on this review, it is clear that (1) predation risk and costs experienced by free-ranging prey are associated with their phenotypic attributes, (2) many generalist predator populations consist of individual specialists with part of the specialization associated with their phenotypes, and (3) a complete understanding of the population dynamic consequences of predation may require information on individual variability in prey selection and prey vulnerability. Altogether, this work (1) highlights the importance of maintaining long-term, detailed studies of individuals of both predators and prey in contrasting ecological conditions, and (2) advocates for a better use of available information to account for interactive effects between predators and their prey when modelling prey population dynamics.  相似文献   

7.
Climate-induced shifts in the timing of life-history events are a worldwide phenomenon, and these shifts can de-synchronize species interactions such as predator–prey relationships. In order to understand the ecological implications of altered seasonality, we need to consider how shifts in phenology interact with other agents of environmental change such as exploitation and disease spread, which commonly act to erode the demographic structure of wild populations. Using long-term observational data on the phenology and dynamics of a model predator–prey system (fish and zooplankton in Windermere, UK), we show that age–size truncation of the predator population alters the consequences of phenological mismatch for offspring survival and population abundance. Specifically, age–size truncation reduces intraspecific density regulation due to competition and cannibalism, and thereby amplifies the population sensitivity to climate-induced predator–prey asynchrony, which increases variability in predator abundance. High population variability poses major ecological and economic challenges as it can diminish sustainable harvest rates and increase the risk of population collapse. Our results stress the importance of maintaining within-population age–size diversity in order to buffer populations against phenological asynchrony, and highlight the need to consider interactive effects of environmental impacts if we are to understand and project complex ecological outcomes.  相似文献   

8.
Piscivory is a key ecological function in aquatic ecosystems, mediating energy flow within trophic networks. However, our understanding of the nature of piscivory is limited; we currently lack an empirical assessment of the dynamics of prey capture and how this differs between piscivores. We therefore conducted aquarium‐based performance experiments, to test the feeding abilities of 19 piscivorous fish species. We quantified their feeding morphology, striking, capturing, and processing behavior. We identify two major functional groups: grabbers and engulfers. Grabbers are characterized by horizontal, long‐distance strikes, capturing their prey tailfirst and subsequently processing their prey using their oral jaw teeth. Engulfers strike from short distances, from high angles above or below their prey, engulfing their prey and swallowing their prey whole. Based on a meta‐analysis of 2,209 published in situ predator–prey relationships in marine and freshwater aquatic environments, we show resource partitioning between grabbers and engulfers. Our results provide a functional classification for piscivorous fishes delineating patterns, which transcend habitats, that may help explain size structures in fish communities.  相似文献   

9.
Varying environmental conditions and energetic demands can affect habitat use by predators and their prey. Anthropogenic habitats provide an opportunity to document both predation events and foraging activity by prey and therefore enable an empirical evaluation of how prey cope with trade‐offs between starvation and predation risk in environments of variable foraging opportunities and predation danger. Here, we use seven years of observational data of peregrine falcons Falco peregrinus and shorebirds at a semi‐intensive shrimp farm to determine how starvation and predation risk vary for shorebirds under a predictable variation in foraging opportunities. Attack rate (mean 0.1 attacks/hr, equating 1 attack every ten hours) was positively associated with the total foraging area available for shorebirds at the shrimp farm throughout the harvesting period, with tidal amplitude at the adjacent mudflat having a strong nonlinear (quadratic) effect. Hunt success (mean 14%) was higher during low tides and declined as the target flocks became larger. Finally, individual shorebird vigilance behaviors were more frequent when birds foraged in smaller flocks at ponds with poorer conditions. Our results provide empirical evidence of a risk threshold modulated by tidal conditions at the adjacent wetlands, where shorebirds trade‐off risk and rewards to decide to avoid or forage at the shrimp farm (a potentially dangerous habitat) depending on their need to meet daily energy requirements. We propose that semi‐intensive shrimp farms serve as ideal “arenas” for studying predator–prey dynamics of shorebirds and falcons, because harvest operations and regular tidal cycles create a mosaic of foraging patches with predictable food supply. In addition, the relatively low hunt success suggests that indirect effects associated with enhanced starvation risk are important in shorebird life‐history decisions.  相似文献   

10.
Climate change and harvesting can affect the ecosystems'' functioning by altering the population dynamics and interactions among species. Knowing how species interact is essential for better understanding potentially unintended consequences of harvest on multiple species in ecosystems. I analyzed how stage‐specific interactions between two harvested competitors, the haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua), living in the Barents Sea affect the outcome of changes in the harvest of the two species. Using state‐space models that account for observation errors and stochasticity in the population dynamics, I run different harvesting scenarios and track population‐level responses of both species. The increasing temperature elevated the number of larvae of haddock but did not significantly influence the older age‐classes. The nature of the interactions between both species shifted from predator‐prey to competition around age‐2 to ‐3. Increased cod fishing mortality, which led to decreasing abundance of cod, was associated with an increasing overall abundance of haddock, which suggests compensatory dynamics of both species. From a stage‐specific approach, I show that a change in the abundance in one species may propagate to other species, threatening the exploited species'' recovery. Thus, this study demonstrates that considering interactions among life history stages of harvested species is essential to enhance species'' co‐existence in harvested ecosystems. The approach developed in this study steps forward the analyses of effects of harvest and climate in multi‐species systems by considering the comprehension of complex ecological processes to facilitate the sustainable use of natural resources.  相似文献   

11.
Prey bacteria shape the community structure of their predators   总被引:1,自引:0,他引:1  
Although predator–prey interactions among higher organisms have been studied extensively, only few examples are known for microbes other than protists and viruses. Among the bacteria, the most studied obligate predators are the Bdellovibrio and like organisms (BALOs) that prey on many other bacteria. In the macroscopical world, both predator and prey influence the population size of the other''s community, and may have a role in selection. However, selective pressures among prey and predatory bacteria have been rarely investigated. In this study, Bacteriovorax, a predator within the group of BALOs, in environmental waters were fed two prey bacteria, Vibrio vulnificus and Vibrio parahaemolyticus. The two prey species yielded distinct Bacteriovorax populations, evidence that selective pressures shaped the predator community and diversity. The results of laboratory experiments confirmed the differential predation of Bacteriovorax phylotypes on the two bacteria species. Not only did Bacteriovorax Cluster IX exhibit the versatility to be the exclusive efficient predator on Vibrio vulnificus, thereby, behaving as a specialist, but was also able to prey with similar efficiency on Vibrio parahaemolyticus, indicative of a generalist. Therefore, we proposed a designation of versatilist for this predator. This initiative should provide a basis for further efforts to characterize the predatory patterns of bacterial predators. The results of this study have revealed impacts of the prey on Bacteriovorax predation and in structuring the predator community, and advanced understanding of predation behavior in the microbial world.  相似文献   

12.
Inter‐ and intra‐guild interactions are important in the coexistence of predators and their prey, especially in highly disturbed vegetable cropping systems with sporadic food resources. Assessing the dietary range of a predator taxon characterized by diverse foraging behavior using conventional approaches, such as visual observation and conventional molecular approaches for prey detection, has serious logistical problems. In this study, we assessed the prey compositions and compare the dietary spectrum of a functionally diverge group of predators—spiders—to characterize their trophic interactions and assess biological control potential in Brassica vegetable fields. We used high‐throughput sequencing (HTS) and biotic interaction networks to precisely annotate the predation spectrum and highlight the predator–predator and predator–prey interactions. The prey taxa in the gut of all spider families were mainly enriched with insects (including dipterans, coleopterans, orthopterans, hemipterans, and lepidopterans) with lower proportions of arachnids (such as Araneae) along with a wide range of other prey factions. Despite the generalist foraging behavior of spiders, the community structure analysis and interaction networks highlighted the overrepresentation of particular prey taxa in the gut of each spider family, as well as showing the extent of interfamily predation by spiders. Identifying the diverse trophic niche proportions underpins the importance of spiders as predators of pests in highly disturbed agroecosystems. More specifically, combining HTS with advanced ecological community analysis reveals the preferences and biological control potential of particular spider taxa (such as Salticidae against lepidopterans and Pisauridae against dipterans), and so provides a valuable evidence base for targeted conservation biological control efforts in complex trophic networks.  相似文献   

13.
Traits affecting ecological interactions can evolve on the same time scale as population and community dynamics, creating the potential for feedbacks between evolutionary and ecological dynamics. Theory and experiments have shown in particular that rapid evolution of traits conferring defense against predation can radically change the qualitative dynamics of a predator–prey food chain. Here, we ask whether such dramatic effects are likely to be seen in more complex food webs having two predators rather than one, or whether the greater complexity of the ecological interactions will mask any potential impacts of rapid evolution. If one prey genotype can be well-defended against both predators, the dynamics are like those of a predator–prey food chain. But if defense traits are predator-specific and incompatible, so that each genotype is vulnerable to attack by at least one predator, then rapid evolution produces distinctive behaviors at the population level: population typically oscillate in ways very different from either the food chain or a two-predator food web without rapid prey evolution. When many prey genotypes coexist, chaotic dynamics become likely. The effects of rapid evolution can still be detected by analyzing relationships between prey abundance and predator population growth rates using methods from functional data analysis.  相似文献   

14.
Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria–ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions.  相似文献   

15.
  1. There is growing evidence that prey perceive the risk of predation and alter their behavior in response, resulting in changes in spatial distribution and potential fitness consequences. Previous approaches to mapping predation risk across a landscape quantify predator space use to estimate potential predator‐prey encounters, yet this approach does not account for successful predator attack resulting in prey mortality. An exception is a prey kill site that reflects an encounter resulting in mortality, but obtaining information on kill sites is expensive and requires time to accumulate adequate sample sizes.
  2. We illustrate an alternative approach using predator scat locations and their contents to quantify spatial predation risk for elk (Cervus canadensis) from multiple predators in the Rocky Mountains of Alberta, Canada. We surveyed over 1300 km to detect scats of bears (Ursus arctos/U. americanus), cougars (Puma concolor), coyotes (Canis latrans), and wolves (C. lupus). To derive spatial predation risk, we combined predictions of scat‐based resource selection functions (RSFs) weighted by predator abundance with predictions that a predator‐specific scat in a location contained elk. We evaluated the scat‐based predictions of predation risk by correlating them to predictions based on elk kill sites. We also compared scat‐based predation risk on summer ranges of elk following three migratory tactics for consistency with telemetry‐based metrics of predation risk and cause‐specific mortality of elk.
  3. We found a strong correlation between the scat‐based approach presented here and predation risk predicted by kill sites and (r = .98, p < .001). Elk migrating east of the Ya Ha Tinda winter range were exposed to the highest predation risk from cougars, resident elk summering on the Ya Ha Tinda winter range were exposed to the highest predation risk from wolves and coyotes, and elk migrating west to summer in Banff National Park were exposed to highest risk of encountering bears, but it was less likely to find elk in bear scats than in other areas. These patterns were consistent with previous estimates of spatial risk based on telemetry of collared predators and recent cause‐specific mortality patterns in elk.
  4. A scat‐based approach can provide a cost‐efficient alternative to kill sites of quantifying broad‐scale, spatial patterns in risk of predation for prey particularly in multiple predator species systems.
  相似文献   

16.

The ubiquity of trophic downgrading has led to interest in the consequences of mesopredator release on prey communities and ecosystems. This issue is of particular concern for reef-fish communities, where predation is a key process driving ecological and evolutionary dynamics. Here, we synthesize existing experiments that have isolated the effects of mesopredators to quantify the role of predation in driving changes in the abundance and biodiversity of recently settled reef fishes. On average, predators reduced prey abundance through generalist foraging behavior, which, through a statistical sampling artifact, caused a reduction in alpha diversity and an increase in beta diversity. Thus, the synthesized experiments provide evidence that predation reduces overall abundance within prey communities, but—after accounting for sampling effects—does not cause disproportionate effects on biodiversity.

  相似文献   

17.
Coevolution between two antagonistic species follows the so-called ‘Red Queen dynamics’ when reciprocal selection results in an endless series of adaptation by one species and counteradaptation by the other. Red Queen dynamics are ‘genetically driven’ when selective sweeps involving new beneficial mutations result in perpetual oscillations of the coevolving traits on the slow evolutionary time scale. Mathematical models have shown that a prey and a predator can coevolve along a genetically driven Red Queen cycle. We found that embedding the prey–predator interaction into a three-species food chain that includes a coevolving superpredator often turns the genetically driven Red Queen cycle into chaos. A key condition is that the prey evolves fast enough. Red Queen chaos implies that the direction and strength of selection are intrinsically unpredictable beyond a short evolutionary time, with greatest evolutionary unpredictability in the superpredator. We hypothesize that genetically driven Red Queen chaos could explain why many natural populations are poised at the edge of ecological chaos. Over space, genetically driven chaos is expected to cause the evolutionary divergence of local populations, even under homogenizing environmental fluctuations, and thus to promote genetic diversity among ecological communities over long evolutionary time.  相似文献   

18.
Predation is a critical ecological process that directly and indirectly mediates population stabilities, as well as ecosystem structure and function. The strength of interactions between predators and prey may be mediated by multiple density dependences concerning numbers of predators and prey. In temporary wetland ecosystems in particular, fluctuating water volumes may alter predation rates through differing search space and prey encounter rates. Using a functional response approach, we examined the influence of predator and prey densities on interaction strengths of the temporary pond specialist copepod Lovenula raynerae preying on cladoceran prey, Daphnia pulex, under contrasting water volumes. Further, using a population dynamic modeling approach, we quantified multiple predator effects across differences in prey density and water volume. Predators exhibited type II functional responses under both water volumes, with significant antagonistic multiple predator effects (i.e., antagonisms) exhibited overall. The strengths of antagonistic interactions were, however, enhanced under reduced water volumes and at intermediate prey densities. These findings indicate important biotic and abiotic contexts that mediate predator–prey dynamics, whereby multiple predator effects are contingent on both prey density and search area characteristics. In particular, reduced search areas (i.e., water volumes) under intermediate prey densities could enhance antagonisms by heightening predator–predator interference effects.  相似文献   

19.
Bdellovibrio and like organisms (BALOs) prey on Gram-negative bacteria in the planktonic phase as well as in biofilms, with the ability to reduce prey populations by orders of magnitude. During the last few years, evidence has mounted for a significant ecological role for BALOs, with important implications for our understanding of microbial community dynamics as well as for applications against pathogens, including drug-resistant pathogens, in medicine, agriculture and aquaculture, and in industrial settings for various uses. However, our understanding of biofilm predation by BALOs is still very fragmentary, including gaps in their effect on biofilm structure, on prey resistance, and on evolutionary outcomes of both predators and prey. Furthermore, their impact on biofilms has been shown to reach beyond predation, as they are reported to reduce biofilm structures of non-prey cells (including Gram-positive bacteria). Here, we review the available literature on BALOs in biofilms, extending known aspects to potential mechanisms employed by the predators to grow in biofilms. Within that context, we discuss the potential ecological significance and potential future utilization of the predatory and enzymatic possibilities offered by BALOs in medical, agricultural and environmental applications.  相似文献   

20.
Phenotypic plasticity in defensive traits is a common response of prey organisms to variable and unpredictable predation regimes and risks. Cladocerans of the genus Daphnia are keystone species in the food web of lentic freshwater bodies and are well known for their ability to express a large variety of inducible morphological defenses in response to invertebrate and vertebrate predator kairomones. The developed defenses render the daphnids less susceptible to predation. So far, primarily large‐scale morphological defenses, like helmets, crests, and tail‐spines, have been documented. However, less is known on whether the tiny spinules, rather inconspicuous traits which cover many Daphnia’s dorsal and ventral carapace margins, respond to predator kairomones, as well. For this reason, we investigated two Daphnia species (Dmagna and D. longicephala) concerning their predator kairomone‐induced changes in dorsal and ventral spinules. Since these small, inconspicuous traits may only act as a defense against predatory invertebrates, with fine‐structured catching apparatuses, and not against vertebrate predators, we exposed them to both, an invertebrate (Triops cancriformis or Notontecta maculata) and a vertebrate predator (Leucaspius delineatus). Our results show that the length of these spinules as well as spinules‐covered areas vary, likely depending on the predator the prey is exposed to. We further present first indications of a Daphnia species‐specific elongation of the spinules and an increase of the spinules‐bearing areas. Although we cannot exclude that spinescence is altered because it is developmentally connected to changes in body shape in general, our results suggest that the inducible alterations to the spinule length and spinules‐covered areas disclose another level of predator‐induced changes in two common Daphnia species. The predator‐induced changes on this level together with the large‐scale and ultrastructural defensive traits may act as the overall morphological defense, adjusted to specific predator regimes in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号