首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the use of modified roosts has been reported in more than 20 species of bats in the tropics, comparative studies of the roosting ecology of congeneric tent‐roosting species are notably lacking. In the Paleotropics, this unique behavior has been described in two species belonging to the genus, Cynopterus: C. sphinx and C. brachyotis. However, it is not known whether tent roosting is an essential component of their roosting ecology, or whether the behavior is found in other members of the genus. In this study we characterize the roosting ecology of four sympatric species of Cynopterus in peninsular Malaysia and use these data to address two main questions. (1) Do all four species use modified roosts and, in those that do, is tent‐roosting obligate or opportunistic? (2) Do species pairs overlap in roost preferences and roosting habitat and, if so, is there evidence for interspecific interactions in relation to these resources? We radio‐tracked bats at two floristically distinct sites and located a total of 249 roosts. Interspecific roost niche overlap was minimal at both sites and we found no evidence for interspecific competition for roost resources at the local level. Species differences in roosting ecology were defined primarily by spatial separation of roosting habitats and secondarily by within‐habitat differences in roost selection. Importantly, we found that although periodic use of modified roosts was a characteristic shared by all four species, most roosts were unmodified, indicating that tent roosting is a facultative behavior in Malaysian Cynopterus.  相似文献   

2.
Roosting information is crucial to guiding bat conservation and bat‐friendly forestry practices. The Ryukyu tube‐nosed bat Murina ryukyuana (Endangered) and Yanbaru whiskered bat Myotis yanbarensis (Critically Endangered) are forest‐dwelling bats endemic to the central Ryukyu Archipelago, Japan. Despite their threatened status, little is known about the roosting ecology of these species and the characteristics of natural maternity roosts are unknown. To inform sustainable forestry practices and conservation management, we radio‐tracked day roosts of both species in the subtropical forests of Okinawa''s Kunigami Village District. We compared roost and roost site characteristics statistically between M. ryukyuana nonmaternity roosts (males or nonreproductive females), maternity roosts, and all M. yanbarensis roosts. Generalized linear models were used to investigate roost site selection by M. ryukyuana irrespective of sex and age class. Lastly, we compiled data on phenology from this and prior studies. Nonreproductive M. ryukyuana roosted alone and primarily in understory foliage. Murina ryukyuana maternity roosts were limited to stands >50 years old, and ~60% were in foliage. Myotis yanbarensis roosted almost entirely in cavities along gulch bottoms and only in stands >70 years old (~1/3 of Kunigami''s total forest area). Murina ryukyuana maternity roosts were higher (4.3 ± 0.6 m) than conspecific nonmaternity roosts (2.3 ± 0.5 m; p < .001) and M. yanbarensis roosts (2.7 ± 0.5 m; not significant). Model results were inconclusive. Both species appear to be obligate plant roosters throughout their life cycle, but the less flexible roosting preferences of M. yanbarensis may explain its striking rarity. To conserve these threatened bats, we recommend the following forestry practices: (a) reduce clearing of understory vegetation, (b) refrain from removing trees along streams, (c) promote greater tree cavity densities by protecting old‐growth forests and retaining snags, and (d) refrain from removing trees or understory between April and July, while bats are pupping.  相似文献   

3.
  1. Urban areas are often considered to be a hostile environment for wildlife as they are highly fragmented and frequently disturbed. However, these same habitats can contain abundant resources, while lacking many common competitors and predators. The urban environment can have a direct impact on the species living there but can also have indirect effects on their parasites and pathogens. To date, relatively few studies have measured how fine‐scale spatial heterogeneity within urban landscapes can affect parasite transmission and persistence.
  2. Here, we surveyed 237 greenspaces across the urban environment of Edinburgh (UK) to investigate how fine‐scale variation in socio‐economic and ecological variables can affect red fox (Vulpes vulpes) marking behavior, gastrointestinal (GI) parasite prevalence, and parasite community diversity.
  3. We found that the presence and abundance of red fox fecal markings were nonuniformly distributed across greenspaces and instead were dependent on the ecological characteristics of a site. Specifically, common foraging areas were left largely unmarked, which indicates that suitable resting and denning sites may be limiting factor in urban environments. In addition, the amount of greenspace around each site was positively correlated with overall GI parasite prevalence, species richness, and diversity, highlighting the importance of greenspace (a commonly used measure of landscape connectivity) in determining the composition of the parasite community in urban areas.
  4. Our results suggest that fine‐scale variation within urban environments can be important for understanding the ecology of infectious diseases in urban wildlife and could have wider implication for the management of urban carnivores.
  相似文献   

4.
Introduced species can cause major disruptions to ecosystems, particularly on islands. On Christmas Island, the invasive yellow crazy ant (Anoplolepis gracilipes) has detrimental impacts on many animals ranging from the iconic red crabs (Gecarcoidea natalis) to the Christmas Island Thrush (Turdus poliocephalus erythropleurus). However, the full extent of its effects on the island's fauna is not yet known. In this study, we investigated the impact of the yellow crazy ants on the island's last native mammal: the Christmas Island flying‐fox (Pteropus natalis). This species has been described as a keystone species, but has recently experienced substantial population decline to the extent that it is now listed as Critically Endangered. We examined the impacts of the yellow crazy ants on the roosting behavior of the Christmas Island flying‐fox, and on its local and island‐wide distribution patterns. We showed that the crazy ants increased behaviors in the flying‐foxes that were associated with avoidance of noxious stimuli and decreased behaviors associated with resting. Roost tree selection and roost site location were not related to variation in the abundance of crazy ants on the island. Our results indicate that the crazy ants interfere with the activity budgets of the flying‐foxes. However, the flying‐foxes failed to relocate to ant‐free roost trees or roost sites when confronted with the noxious ant, suggesting that the flying‐foxes are either not sufficiently disturbed to override strong cultural attachment to roosts, or, are behaving maladaptively due to ecological naïveté.  相似文献   

5.
Several biodiversity‐centered metrics exist to quantify the importance of landscape and habitat features for conservation efforts. However, for species whose habitat use is not quantified by these metrics, such as those in urban areas, we need a method to best identify features for targeted conservation efforts. We investigated the use of social network analysis (SNA) to identify and quantify these critical habitat features. We used SNA to identify network existence in chimney swift (Chaetura pelagica) roost usage, quantify the importance of each roost site, and evaluate the impact of the loss of key sites. We identified a network consisting of ten chimney swift roosts in southern Nova Scotia, Canada, and found that 76% of swifts used more than one roost throughout the breeding season. We also isolated three key (most connected) roost sites. We evaluated the effect of loss of these key sites on the network by using a Wilcoxon‐Pratt signed‐rank test and by analyzing the structure of the subsequent network. We found that connections between roosts and the structure of the network were significantly affected by the loss of these key sites. Our results show that SNA is a valuable tool that can identify key sites for targeted conservation efforts for species that may not be included in conservation efforts focused purely on biodiversity.  相似文献   

6.
7.
We know little about how forest bats, which are cryptic and mobile, use roosts on a landscape scale. For widely distributed species like the endangered Indiana bat Myotis sodalis, identifying landscape-scale roost habitat associations will be important for managing the species in different regions where it occurs. For example, in the southern Appalachian Mountains, USA, M. sodalis roosts are scattered across a heavily forested landscape, which makes protecting individual roosts impractical during large-scale management activities. We created a predictive spatial model of summer roosting habitat to identify important predictors using the presence-only modeling program MaxEnt and an information theoretic approach for model comparison. Two of 26 candidate models together accounted for >0.93 of AICc weights. Elevation and forest type were top predictors of presence; aspect north/south and distance-to-ridge were also important. The final average best model indicated that 5% of the study area was suitable habitat and 0.5% was optimal. This model matched our field observations that, in the southern Appalachian Mountains, optimal roosting habitat for M. sodalis is near the ridge top in south-facing mixed pine-hardwood forests at elevations from 260–575 m. Our findings, coupled with data from other studies, suggest M. sodalis is flexible in roost habitat selection across different ecoregions with varying topography and land use patterns. We caution that, while mature pine-hardwood forests are important now, specific areas of suitable and optimal habitat will change over time. Combining the information theoretic approach with presence-only models makes it possible to develop landscape-scale habitat suitability maps for forest bats.  相似文献   

8.
  1. Predicting the likelihood of wildlife presence at potential wildlife–livestock interfaces is challenging. These interfaces are usually relatively small geographical areas where landscapes show large variation over small distances. Models of wildlife distribution based on coarse data over wide geographical ranges may not be representative of these interfaces. High‐resolution data can help identify fine‐scale predictors of wildlife habitat use at a local scale and provide more accurate predictions of species habitat use. These data may be used to inform knowledge of interface risks, such as disease transmission between wildlife and livestock, or human–wildlife conflict.
  2. This study uses fine‐scale habitat use data from wild boar (Sus scrofa) based on activity signs and direct field observations in and around the Forest of Dean in Gloucestershire, England. Spatial logistic regression models fitted using a variant of penalized quasi‐likelihood were used to identify habitat‐based and anthropogenic predictors of wild boar signs.
  3. Our models showed that within the Forest of Dean, wild boar signs were more likely to be seen in spring, in forest‐type habitats, closer to the center of the forest and near litter bins. In the area surrounding the Forest of Dean, wild boar signs were more likely to be seen in forest‐type habitats and near recreational parks and less likely to be seen near livestock.
  4. This approach shows that wild boar habitat use can be predicted using fine‐scale data over comparatively small areas and in human‐dominated landscapes, while taking account of the spatial correlation from other nearby fine‐scale data‐points. The methods we use could be applied to map habitat use of other wildlife species in similar landscapes, or of movement‐restricted, isolated, or fragmented wildlife populations.
  相似文献   

9.
We examined characteristics of roosting sites utilized by two flying fox species (Pteropus tonganus and P. samoensis) in American Samoa. The colonial roosting sites of P. tonganus were observed over a ten‐year period, including two years when severe hurricanes devastated bat populations and destroyed roost trees. Prior to the hurricanes, roosts were located on cliff faces above the ocean or steep mountainsides, locations that were either inaccessible to people or in protected areas where hunting was not allowed. In the years immediately following the hurricanes, P. tonganus colonies split into smaller groups that moved frequently to different locations. Four years after the second hurricane, colonies had coalesced and returned to many of the traditional roosting sites used before the hurricanes. Common tree species in upland and coastal forest were selected as roosts. The isolated locations selected for P. tonganus roosts were apparently the result of hunting pressure on the colonies. The solitary roosts of P. samoensis were observed during 29 months. Roosting bats were well concealed and hard to detect within the forest; even bats on exposed branches were cryptic. Mature primary forest was favored as roosting habitat. Individual bats used specific branches or trees as roosts and returned to them for up to 29 months. Unlike P. tonganus, people did not alarm roosting P. samoensis easily and some roosts were located near houses and along roads.  相似文献   

10.
Forest roosting bats use a variety of ephemeral roosts such as snags and declining live trees. Although conservation of summer maternity habitat is considered critical for forest-roosting bats, bat response to roost loss still is poorly understood. To address this, we monitored 3 northern long-eared bat (Myotis septentrionalis) maternity colonies on Fort Knox Military Reservation, Kentucky, USA, before and after targeted roost removal during the dormant season when bats were hibernating in caves. We used 2 treatments: removal of a single highly used (primary) roost and removal of 24% of less used (secondary) roosts, and an un-manipulated control. Neither treatment altered the number of roosts used by individual bats, but secondary roost removal doubled the distances moved between sequentially used roosts. However, overall space use by and location of colonies was similar pre- and post-treatment. Patterns of roost use before and after removal treatments also were similar but bats maintained closer social connections after our treatments. Roost height, diameter at breast height, percent canopy openness, and roost species composition were similar pre- and post-treatment. We detected differences in the distribution of roosts among decay stages and crown classes pre- and post-roost removal, but this may have been a result of temperature differences between treatment years. Our results suggest that loss of a primary roost or ≤ 20% of secondary roosts in the dormant season may not cause northern long-eared bats to abandon roosting areas or substantially alter some roosting behaviors in the following active season when tree-roosts are used. Critically, tolerance limits to roost loss may be dependent upon local forest conditions, and continued research on this topic will be necessary for conservation of the northern long-eared bat across its range.  相似文献   

11.
Closely related, ecologically similar species often roost in distinctly different habitats, and roosting patterns also vary within species in relation to sex, age and season. The causes of such variation are not well understood at either a proximate or ultimate level. We studied communal roosting in two congeneric species of Prionostemma harvestmen at a rainforest site in Nicaragua. Previous research showed that Prionostemma sp. 1 forms male‐biased communal roosts in tree‐root cavities, while Prionostemma sp. 2 forms communal roosts of variable but temporally stable sex ratios on spiny palms. Here, we investigate potential mechanisms underlying variation in roosting site choice between and within these syntopic species. First, we present the results of a field experiment designed to probe the mechanism underlying skewed roost sex ratios in Prionostemma sp. 2. Previous studies have suggested that these harvestmen use conspecific scent to locate communal roosts and that new roosts can be established via group translocation. Therefore, to test the hypothesis that skewed roost sex ratios in this species arise from sex differences in scent marks, we translocated single‐sex groups of ca. 30 individuals to each of 20 previously unoccupied spiny palms. Female release sites attracted new recruits of both sexes, while male release sites attracted almost exclusively males. We infer that Prionostemma sp. 2 females preferentially roost in sites scent‐marked by females and that this mechanism is sufficient to explain the skewed roost ratios. Further adding to knowledge of Prionostemma roosting behavior, we show that Prionostemma sp. 1 forms female‐biased communal roosts on spiny palms, that some roosts contain both species, and that the species composition is stable on a time scale of at least 2 weeks. To the best of our knowledge, this study is the first experimental test of mechanisms underlying sexual segregation at communal roosts in any taxon.  相似文献   

12.
Social calls in bats have many functions, including mate attraction and maintaining contact during flight. Research suggests that social calls may also be used to transfer information about roosts, but no studies have yet demonstrated that calls are used to actively attract conspecifics to roosting locations. We document the social calls used by Spix''s disc-winged bat (Thyroptera tricolor) to actively recruit group members to roosts. In acoustic trials, we recorded two sets of calls; one from flying individuals termed ‘inquiry calls’, and another from roosting bats termed ‘response calls’. Inquiry calls were emitted by flying bats immediately upon release, and quickly (i.e. 178 ms) elicited production of response calls from roosting individuals. Most flying bats entered the roost when roosting individuals responded, while few bats entered the roost in the absence of a response. We argue that information transfer concerning roost location may facilitate sociality in T. tricolor, given the ephemeral nature of roosting structures used by this species.  相似文献   

13.
Investigating factors that promote group living in animals can help us to understand the evolution of sociality. The dark woolly bat, Kerivoula furva, forms small groups and uses furled leaves of banana (Musa formosana) as day roosts in subtropical Taiwan. In this study, we reported on the roosting ecology and social organization of K. furva. We examined whether ecological constraints, demographic traits, and physiological demands contributed to its sociality. From July 2014 to May 2016, we investigated the daily roost occupation rate, group size, and composition of each roost, and we calculated association indices in pairs. The results showed K. furva lived in groups throughout the year, and the average daily roost occupation rate was approximately 6.7% of all furled leaves that were suitable for roosting. The size of roosting groups of adults in each roost varied between 1 and 13; group size was independent of air temperature during both reproductive and nonreproductive seasons. The vast majority of roosting groups was composed of females and their young, and males frequently roosted solitarily or in a bachelor group. Forty adult bats were captured ≥4 times during the study period. The association indices in pairs of these 40 bats ranged between 0 and 0.83 with an average of 0.05 ± 0.14 (n = 780). The average association index of female–female pairs was significantly higher than that of female–male pairs and male–male pairs. Based on the association indices, the 40 bats were divided into seven social groups with social group sizes that varied between 2 and 10. Despite changing day roosts frequently, the relatively stable social bonds were maintained year‐round. Our results that groups of K. furva were formed by active aggregation of multiple generation members supported the demographic traits hypothesis.  相似文献   

14.
15.
ABSTRACT In Arizona, USA, Allen's lappet-browed bat (Idionycteris phyllotis) forms maternity colonies in ponderosa pine (Pinus ponderosa) snags. There is little information on the roosting habitat of males. We used radiotelemetry to locate 16 maternity, 3 postlactating, and 2 bachelor roosts and combined data with unpublished data for maternity roosts (n = 11) located in 1993–1995. Most (96%) maternity roosts were in large-diameter ( ± SE: 64 ± 2.7 cm) ponderosa pine snags under sloughing bark. Models that best predicted the probability of a snag's use as a maternity roost indicated bats selected taller snags closer to forest roads than comparison snags. Maternity roosts averaged 11 bats per roost (SE = 2, n = 15; from exit counts) and were an average distance of 1.6 km from capture sites (SE = 0.3, n = 17). Bachelor roosts were in vertical sandstone cliff faces in pinyon-juniper (Pinus edulis-Juniperus spp.) woodlands approximately 12 km from capture sites; these and other capture records in Arizona indicated sexual segregation may have occurred during the maternity season. Of 11 maternity snag roosts located in 1993–1995, only one continued to function as a roost. Resource managers should maintain patches of large-diameter ponderosa pine snags with peeling bark to provide maternity roosting habitat for Allen's lappet-browed bat.  相似文献   

16.
Several species of Nearctic-Neotropical migratory songbirds appear to form roosting aggregations while on their wintering grounds but little is understood about the ecology of this behavior. We studied roosting behavior and patterns of roost habitat selection in the northern waterthrush Seiurus noveboracensis , during three winter years (2002–2004) in Puerto Rico using radio telemetry. Overall, red mangrove was selected for roosting disproportionately to its availability. Regardless of diurnal habitat used, 87% (n=86) of northern waterthrush selected dense stands of coastal red mangrove for roost sites. Individuals traveled up to 2 km to access roost sites in this habitat on a daily basis. The majority (8 of 14) of individuals roosted alone, while others roosted in loose aggregations near communal roosts of gray kingbirds Tyrannus dominicensis . Patterns of roost site selection did not vary by sex. Individuals showing aggressive response to playback during the day, however, selected roost sites significantly closer to the coast. Several additional migratory and resident bird species also used red mangrove for night-time roosting habitat. Red mangrove may be a critical nocturnal roosting habitat for bird populations that live in proximity to coastal areas in the Neotropics. The benefits of nocturnal roosting behavior as well as why individuals appear to select red mangrove remain poorly understood.  相似文献   

17.
We studied the roosting ecology of the long-tailed bat (Chalinolobus tuberculatus) during the springautumn months from 1998–2002 at Hanging Rock in the highly fragmented landscape of South Canterbury, South Island, New Zealand. We compared the structural characteristics and microclimates of roost sites used by communally and solitary roosting bats with those of randomly available sites, and roosts of C. tuberculatus occupying unmodified Nothofagus forest in the Eglinton Valley, Fiordland. Roosting group sizes and roost residency times were also compared. We followed forty radio-tagged bats to 94 roosts (20% in limestone crevices, 80% in trees) at Hanging Rock. Roosts were occupied for an average of 1 day and 86% were only used once during the study period. Colony size averaged 9.8 ± 1.1 bats (range 2–38) and colonies were dominated by breeding females and young. Indigenous forest, shrubland remnants and riparian zones were preferred roosting habitats. Communally roosting bats selected roosts in split trunks of some of the largest trees available. Selection of the largest available trees as roost sites is similar to behaviour of bat species occupying unmodified forested habitats. Temperatures inside 12 maternity roosts measured during the lactation period were variable. Five roosts were well insulated from ambient conditions and internal temperatures were stable, whereas the temperatures inside seven roosts fluctuated in parallel with ambient temperature. Tree cavities used by bats at Hanging Rock were significantly nearer ground level, had larger entrance dimensions, were less well insulated, and were occupied by fewer bats than roosts in the Eglinton Valley. These characteristics appear to expose their occupants to unstable microclimates and to a higher risk of threats such as predation. We suggest that roosts at Hanging Rock are of a lower quality than those in the Eglinton Valley, and that roost quality may be one of the contributory factors in the differential reproductive fitness observed in the two bat populations. The value of introduced willows (especially Salix fragilis) as bat roosts should be acknowledged. We recommend six conservation measures to mitigate negative effects of deterioration of roosting habitat: protection and enhancement of the quality of existing roosts, replanting within roosting habitat, provision of high quality artificial roosts, predator control, and education of landowners and statutory bodies.  相似文献   

18.
19.
Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis) maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations) and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.  相似文献   

20.
Migratory aerial insectivores are among the fastest declining avian groups, but our understanding of these trends has been limited by poor knowledge of migratory connectivity and the identification of critical habitat across the vast distances they travel annually. Using new, archival GPS loggers, we tracked individual purple martins Progne subis from breeding colonies across North America to determine precise (< > 10 m) locations of migratory and overwintering roost locations in South America and to test hypotheses for fine‐scale migratory connectivity and habitat use. We discovered weak migratory connectivity at the roost scale, and extensive, fine‐scale mixing of birds in the Amazon from distant (> 2000 km) breeding sites, with some individuals sharing the same roosting trees. Despite vast tracts of contiguous forest in this region, birds occupied a much more limited habitat, with most (56%) roosts occurring on small habitat islands that were strongly associated with water. Only 17% of these roosts were in current protected areas. These data reflect a critical advance in our ability to remotely determine precise migratory connectivity and habitat selection across vast spatial scales, enhancing our understanding of population dynamics and enabling more effective conservation of species at risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号