首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acid glycosidase content of rat liver Kupffer cells was compared with that of hepatocytes and resident peritoneal macrophages. Homogenates of all these cells were able to hydrolyze the p-nitrophenyl glycosides of N-acetylglucosamine, N-acetylgalactosamine, glucose, galactose, fucose and mannose, but not xylose. Activity was greatest against the N-acetylglucosaminoside. With Kupffer cell homogenates, most of the glycosidases behaved as if they were lysosomal enzymes.When expressed as rates of hydrolysis per 106 cells, activities against a given substrate by homogenates from the three cell types generally agreed within a factor of 2–4. Significant differences between cell types were found, however, when ratios of glycosidase activities were compared. Furthermore, even though the quantity of glycosidase per cell was similar in Kupffer cells and hepatocytes, the glycosidase concentrations were much higher in the former cells, since Kupffer cells are much smaller than hepatocytes.  相似文献   

2.
Human and rat peritoneal macrophages and rat Kupffer cells were labelled with [1-14C] arachidonic acid and stimulated with the calcium ionophore A23187. The metabolites formed were separated by high pressure liquid chromatography (HPLC). Human peritoneal macrophages formed especially leukotriene B4, 5-hydroxy-6,8,11,14 eicosatetraenoic acid and small amounts of leukotriene C4 and thromboxane B2, 12-hydroxy-5,8,10 heptadecatrienoic acid and 6-keto-prostaglandin F1 alpha, whereas rat peritoneal macrophages mainly produced cyclooxygenase products and in particular thromboxane B2 and 12-hydroxy-5,8,10 heptadecatrienoic acid. Rat Kupffer cells synthesized mainly cyclooxygenase products such as prostaglandin F2 alpha, prostaglandin D2 and prostaglandin E2. These results indicate that the profile of eicosanoids production by macrophages is dependent both on the species and on the tissue from which the macrophage is derived.  相似文献   

3.
4.
Effect of praseodymium nitrate on hepatocytes and Kupffer cells in the rat.   总被引:4,自引:0,他引:4  
Intravenous administration of the rare earth metal salt, praseodymium nitrate, induced hepatic damage in the rat, as assessed by morphologic examination (light and electron microscopy) and biochemical parameters (serum glutamic-pyruvic transaminase (EC 2.6.1.2) and glutamic-oxalacetic transaminase (EC 2.6.1.1) activity as well as hepatic triglyceride content). Praseodymium hepatotoxicity was only attained with lower doses (10, 20, or 40 mg/kg), whereas a larger dose (80 mg/kg) was inactive in this respect. As detected by electron microscopy, lower doses of the metal salt caused hepatocytic alterations consisting of degranulation and dilatation of rough endoplasmic reticulum, accumulation of smooth endoplasmic reticulum as well as numerous lipid droplets. No abnormalities were detected in the cell organelles following administration of a large dose of the metal salt; however, vacuoles containing markedly electron-dense material were seen in the cytoplasm of the hepatocytes and the sinusoidal Kupffer cells.  相似文献   

5.
6.
The membrane lipid composition of isolated hepatocytes, Kupffer cells and endothelial cells was determined. The hepatocytes are characterized by a lower quantity of gangliosides, cholesterol, sphingomyelin and a reduced cholesterol/phospholipid molar ratio when compared to the two other liver cell types. The main gangliosides of Kupffer and endothelial cells are the GM3 species, and those of hepatocytes are of the polysialogangliosides species.  相似文献   

7.
Uridine catabolism in Kupffer cells, endothelial cells, and hepatocytes   总被引:1,自引:0,他引:1  
Kupffer cells, endothelial cells, and hepatocytes were separated by centrifugal elutriation. The rate of uracil formation from [2-14C]uridine, the first step in uridine catabolism, was monitored in suspensions of the three different liver cell types. Kupffer cells demonstrated the highest rate of uridine phosphorolysis. 15 min after the addition of the nucleoside the label in uracil amounted to 51%, 13%, and 19% of total radioactivity in the medium of Kupffer cells, endothelial cells, and hepatocytes, respectively. If corrected for Kupffer cell contamination, hepatocyte suspensions demonstrated similar activities as endothelial cells. In contrast to non-parenchymal cells, hepatocytes continuously cleared uracil from the incubation medium. The lack of uracil consumption by Kupffer cells and endothelial cells points to uracil as the end-product of uridine catabolism in these cells. Kupffer cells and endothelial cells did not produce radioactive CO2 upon incubation in the presence of [2-14C]uridine. Hepatocytes, however, were able to degrade uridine into CO2, beta-alanine, and ammonia as demonstrated by active formation of volatile radioactivity from the labeled nucleoside. There was almost no detectable formation of thymine from thymidine or of cytosine, uracil, or uridine from cytidine by any of the different cell types tested. These results are in line with low thymidine phosphorolysis and cytidine deamination in rat liver. Our studies suggest a co-operation of Kupffer cells, endothelial cells, and hepatocytes in the breakdown of uridine from portal vein blood with uridine phosphorolysis predominantly occurring in Kupffer cells and with uracil catabolism restricted to parenchymal liver cells.  相似文献   

8.
In order to target liposomes to cells expressing at their surface mannose receptors, e.g. mouse Kupffer cells and peritoneal macrophages, we have developed a new synthetic strategy which allows a chemically well defined preparation of neo-mannosylated vesicles. alpha-D-Thiomannopyranoside residues, substituted with a hydrophilic spacer arm and functionalized with a sulfhydryl group, were covalently coupled to preformed large unilamellar vesicles containing 4-(p-maleimidophenyl)butyryl phosphatidylethanolamine. Liposomes, containing 15 mol% of mannosyl residues, were specifically aggregated with concanavalin A; this aggregation could be reversed by an excess of free methyl alpha-D-mannopyranoside indicating that the surface ligands were freely accessible to the lectin. The neo-mannosylated liposomes presented in vitro an increased binding to cells possessing alpha-D-mannose specific binding sites. At 37 degrees C a specific binding, up to 9-fold compared to control vesicles, was observed. These neo-mannosylated vesicles represent attractive tools for targeting bio-active molecules to macrophage-associated diseases.  相似文献   

9.
Peritoneal, bronchoalveolar and hepatic (Kupffer) macrophages activated in vitro by endotoxin, exhibit alterations in nitric oxide production when certain hormones or other biologically active agents (autacoids) are present in the culture medium. They also show changes in acid beta-glucuronidase activities and morphological changes concerning cell size and general appearance. Agents known to elevate the intracellular levels of cyclic AMP, e.g. adrenalin, prostaglandin E2 and dopamine, increase the nitric oxide production in all three types of macrophage. The addition of H-89, an inhibitor of protein kinase A, abolishes the increase in nitric oxide production. Adrenalin also increases the extracellular activity of beta-glucuronidase. The results of this work suggest that cyclic AMP-elevating hormones and autacoids affect the functions of endotoxin-activated macrophages, such as the production of nitric oxide and the activity of acid beta-glucuronidase.  相似文献   

10.
Hepatocytes and Kupffer cells were separated from rat liver after prelabeling the Kupffer cells with colloidal iron and perfusion of the liver with digestive enzymes. The activity of several enzymes from Kupffer cells and hepatocytes was compared to validate this method of cell separation. The ratios of hepatocyte to Kupffer cell specific activities of glucose-6-phosphatase, 5'-nucleotidase, adenylate cyclase, and acid phosphatase were 20, 0.39, 0.18, and 0.078, respectively. Adenylate cyclases from hepatocytes and Kupffer cells were stimulated by fluoride ion, GTP, and catecholamines. Hepatocyte adenylate cyclase was also stimulated by glucagon, secretin, vasoactive intestinal polypeptide, and by prostaglandin E1, whereas, the Kupffer cell enzyme was completely insensitive to these hormones. The stimulation of hepatocyte adenylate cyclase by combinations of glucagon plus secretin, or glucagon plus vasoactive intestinal polypeptide, were equivalent to the sum of the individual stimulations. This suggests that the hepatocyte has specific receptors for glucagon and for vasoactive intestinal polypeptide and secretin. Prostaglandin E1 stimulation of hepatocyte adenylate cyclase was not additive to the stimulation caused by polypeptide hormones or catecholamines, nor did prostaglandin E1 decrease stimulation caused by these hormones. Although prostaglandin-sensitive adenylate cyclase was recovered with hepatocytes, 40 to 50% of the total liver prostaglandin-sensitive activity was recovered in a fraction of cell debris mixed with small cells which did not phagocytize colloidal iron.  相似文献   

11.
Phagocytosis, intracellular killing of Candida albicans, and superoxide production by rat peritoneal macrophages exposed to aflatoxins B1, B2, G1, G2, B2a, and M1 at several times and concentrations were analyzed to evaluate the intensity of a depressive effect for each mycotoxin. All aflatoxins used at very low concentrations had a depressive effect on the functions of macrophages. The biggest impairment of phagocytosis, intracellular killing, and spontaneous superoxide production was observed in macrophages exposed to aflatoxins B1 and M1.  相似文献   

12.
The activities of five glycolipid-glycosyltransferases, GL2, GM3, GM2, GM1, and GD1a synthase, were determined in a cell-free system with homogenate protein of total rat liver, isolated hepatocytes, Kupffer cells, and sinusoidal endothelial cells. In rat liver parenchymal and nonparenchymal cells ganglioside synthases were distributed differently. Compared to hepatocytes, Kupffer cells expressed a nearly sevenfold greater activity of GM3 synthase, but only 14% of GM2, 19% of GM1, and 67% of GD1a synthase activity. Sinusoidal endothelial cells expressed a pattern of enzyme activities quite similar to that of Kupffer cells with the exception of higher GM2 synthase activity. Activity of GL2 synthase was distributed unifromly in parenchymal and nonparenchymal cells of rat liver, but differed by sex. It was 1 to 2 orders of magnitude below that of all the other ganglioside synthases investigated. The results indicate GL2 synthase regulates the total hepatic ganglioside content, and hepatocytes but not nonparenchymal liver cells have high enzymatic capacities to form a-series gangliosides more complex than GM3.  相似文献   

13.
We determined the effects of various degrees of chemical modification of low-density lipoprotein (LDL) on its interaction with receptors present on human fibroblasts, human monocyte-derived macrophages and rat peritoneal macrophages. We isolated LDL (d = 1.019-1.063 g/ml) and carbamylated different numbers of lysine residues and tested its cell-interactive properties, including binding, degradation, and stimulation of [3H]oleate incorporation into cholesteryl oleate. Small carbamylation of LDL (approximately 1-2% of lysine residues) resulted in a reduced ability (70-80% of control) to displace 125I-labeled LDL from fibroblast receptors. Modification of 12.5-25% of lysine residues resulted in a marked increase in the ability of LDL to interact with scavenger receptors and an almost total loss in the ability to interact with apolipoprotein B-E receptors. Acetylated LDL and malondialdehyde-modified LDL inhibited competitively the degradation of 125I-carbamylated LDL by human macrophages. Thus, the extent of modification plays an important role in recognition of modified LDL by scavenger receptors. There also seems to be a range of modification over which LDL is not yet recognized by the scavenger receptor, but its interaction with the apolipoprotein B-E receptor is markedly reduced. This perhaps explains how a small in vivo modification of LDL can result in an increase in residence time of LDL in the subendothelial tissue which can lead to further local interactions, ultimately increasing the atherogenicity of the LDL particle.  相似文献   

14.
A thrombin receptor in resident rat peritoneal macrophages.   总被引:2,自引:0,他引:2  
Resident rat peritoneal macrophages possess 6 x 10(2) high-affinity binding sites per cell for bovine thrombin with a Kd of 11 pM, and 7.5 x 10(4) low-affinity sites with a Kd of 5.8 nM. These binding sites are highly specific for thrombin. Half-maximal binding of 125I-labeled bovine thrombin is achieved after 1 min at 37 degrees C, and after 12 min at 4 degrees C. The reversibly bound fraction of the ligand dissociates according to a biexponential time course with the rate constants 0.27 and 0.06 min-1 at 4 degrees C. Part of the tracer remains cell-associated even after prolonged incubation, but all cell-associated radio-activity migrates as intact thrombin upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The bound thrombin is minimally endocytosed as judged by the resistance to pH 3 treatment, and the receptor does not mediate a quantitatively important degradation of the ligand. The binding is not dependent on the catalytic site of thrombin, since irreversibly inactivated thrombin also binds to the receptor. 125I-labeled thrombin covalently cross-linked to its receptor migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a Mr 160,000, corresponding to an approximate receptor size of Mr 120,000.  相似文献   

15.
Several cell-mediated activities for the amino terminus of fibronectin have been documented. In the present study we describe a macrophage surface protein with binding activity directed to the amino terminus of the fibronectin molecule. The binding of a 29-kDa amino-terminal fibronectin fragment to macrophages reached steady state by 30 min and was half-maximal at approximately 2 x 10(-8) M. This binding was specifically inhibited by excess unlabeled 29-kDa fragment or intact fibronectin but not by a 180-kDa fibronectin fragment which lacks the amino terminus. Competitive binding studies of the 70-kDa amino-terminal fibronectin fragment to macrophages revealed a single binding site with KD = 7.14 x 10(-8) M and approximately 8 x 10(4) binding sites/cell. Radiolabeled surface proteins extracted from rat peritoneal macrophages and from the human U937 cell line were applied to an affinity column comprised of the 70-kDa amino-terminal fragment of fibronectin coupled to a solid support. A single trypsin-sensitive radiolabeled protein of 67 kDa, from either cell type, was eluted from this column with urea. This protein showed no immunologic identity with fibronectin, fibrin(ogen), or albumin. The 67-kDa protein exhibited identical apparent molecular weight under reducing and nonreducing conditions, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. We have localized the fibronectin binding activity of this protein to within the 29-kDa amino-terminal domain of fibronectin. The 67-kDa protein eluted from the 70-kDa column failed to bind to a column comprised of the 45-kDa gelatin-binding fragment of fibronectin. Additionally, the 67-kDa protein was specifically eluted from the 70-kDa column by the 29-kDa amino-terminal fragment but not by the 45-kDa gelatin-binding fragment. These data suggest that this 67-kDa protein is a macrophage cell surface binding protein for the amino terminus of fibronectin.  相似文献   

16.
Cadmium metabolism by rat liver endothelial and Kupffer cells.   总被引:1,自引:0,他引:1  
The metabolism of cadmium was investigated in Wistar-rat liver non-parenchymal cells. Kupffer and endothelial cells, the major cell populations lining the sinusoidal tracts, were isolated by collagenase dispersion and purified by centrifugal elutriation. At 20 h after subcutaneous injection of the metal salt (1.5 mg of Cd/kg body weight), endothelial cells accumulated 2-fold higher concentrations of Cd than did Kupffer or parenchymal cells. Most of the Cd in non-parenchymal cells was associated with cytosolic metallothionein (MT), the low-Mr heavy-metal-binding protein(s). When MT was quantified in cytosols from cells isolated from control rats by a 203Hg competitive-binding assay, low levels were found to be present in Kupffer, endothelial and parenchymal cells. Cd injection significantly increased MT levels in all three cell types. The induction of MT synthesis was investigated in vitro by using primary monolayer cultures. The incorporation of [35S]cysteine into MT increased 47% over constitutive levels in endothelial-cell cultures after the addition of 0.8 microM-Cd2+ to the medium for 10 h. MT synthesis in Kupffer cells was not observed. The lack of MT synthesis by monolayer cultures of Kupffer cells in vitro was associated with a decreased capacity of these cells to accumulate heavy metals from the extracellular medium. This apparent decreased ability to transport metals did not reflect a general defect in either cellular function or metabolic activity, since isolated Kupffer cells incorporated [3H]leucine into protein at rates comparable with those shown by liver parenchymal cells and readily phagocytosed particles.  相似文献   

17.
During transit through the epididymis, spermatozoa acquire fertilizing the cell surface exhibits an altered glycoprotein pattern. Epididymal cells and their secretions contribute to these sperm-surface changes. To examine this process, epithelial cells from rat caput and cauda epididymidis were cultured and examined for the synthesis, processing and secretion of two glycoprotein-modifying enzymes, beta-galactosidase and beta-glucuronidase. Cells were cultured four days, incubated with D-2-[3H] mannose and L-[35S] methionine, and placed in isotope-free media. Levels of both cellular and secreted beta-galactosidase and beta-glucuronidase were determined by immunoprecipitation of cell homogenates or medium, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and scintillation counting of bands. During a 1-h pulse, both caput and cauda cells synthesize two precursor forms of beta-galactosidase (Mr = 84,000 and 87,000), which are processed to the mature (Mr = 63,000) enzyme during a 24-h chase. Caput cells release a high molecular weight (HMW) form (Mr = 90-100,000) and mature beta-galactosidase into the media, but not the Mr = 84-87,000 precursor. On the other hand, cauda cells release mostly mature beta-galactosidase. Ratios of radiolabeled mannose/methionine demonstrate a 7-fold greater mannose content in the cellular precursor of beta-galactosidase than in total protein. Another glycosidase, beta-glucuronidase, is synthesized as a Mr = 78,000-precursor which is processed to the mature Mr = 72,000 form. Medium in which caput and cauda cells were cultured contains both mature enzyme and a Mr = 94,000 form, but no 78,000-precursor form. Ratios of radiolabeled mannose/methionine in the cellular precursor of beta-glucuronidase are 2-fold greater than ratios in the total glycoprotein. Secretion is the major pathway of turnover for several epididymal glycosidases, since more than 50% of the total is secreted/day. These results indicate that cultured epithelial cells from the epididymis synthesize glycosidases and that processing and release differ, depending on the enzyme and the epididymal segment from which the epithelial cells were isolated.  相似文献   

18.
Phagocytosis, intracellular killing of Candida albicans, and superoxide production by rat peritoneal macrophages exposed to aflatoxins B1, B2, G1, G2, B2a, and M1 at several times and concentrations were analyzed to evaluate the intensity of a depressive effect for each mycotoxin. All aflatoxins used at very low concentrations had a depressive effect on the functions of macrophages. The biggest impairment of phagocytosis, intracellular killing, and spontaneous superoxide production was observed in macrophages exposed to aflatoxins B1 and M1.  相似文献   

19.
Isolated rat Kupffer cells produced and released prostaglandin (PG) E2, 6-keto-PGF1 alpha, and thromboxane B2 (TXB2) in response to lipopolysaccharide (LPS) stimulation. This elevation of PGE2, 6-keto-PGF1 alpha and TXB2 in the medium was not observed when cells were cultured in the absence of extracellular calcium or in the presence of an extracellular calcium chelator, EGTA. An intracellular calcium antagonist, TMB-8, also suppressed the production of PGE2, 6-keto-PGF1 alpha and TXB2 in a concentration-dependent manner. The intra-cellular calcium concentration of Kupffer cells elevated early after the addition of LPS determined by the use of fura-2 and a fluorescence microscopy. Moreover, calmodulin inhibitors, W-7 and W-13, apparently inhibited the production of PGF2, 6-keto-PGF1 alpha and TXB2. All these results suggest that LPS-induced PG production by stimulated rat Kupffer cells may be regulated by a calcium-calmodulin pathway.  相似文献   

20.
The effects of tumor necrosis factor-alpha (TNF-alpha) on DNA synthesis in AH66 rat hepatoma cells and rat hepatocytes were analysed by means of [3H]thymidine incorporation. DNA synthesis in AH66 cells was suppressed when AH66 cells were directly incubated with TNF-alpha. When primary culture of rat Kupffer cells was incubated with hepatocyte conditioned media pretreated with TNF-alpha (0-200 U/ml), and AH66 cells were then treated with these hepatocyte/Kupffer cell-conditioned media, TNF-alpha used in the pretreatment caused a dose-dependent increase in DNA synthesis in AH66 cells with a maximum effect amounting to a more than 10-fold increase. In contrast, DNA synthesis in primary culture of rat hepatocytes was not stimulated by the TNF-alpha-pretreated hepatocyte/Kupffer cell conditioned media. These results suggest that TNF-alpha-mediated hepatocyte-Kupffer cell interaction selectively promotes proliferation of rat hepatoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号