首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Properties of the Bacillus subtilis spore coat.   总被引:15,自引:10,他引:5       下载免费PDF全文
About 70% of the protein in isolated Bacillus subtilis spore coats was solubilized by treatment with a combination of reducing and denaturing agents at alkaline pH. The residue, consisting primarily of protein, was insoluble in a variety of reagents. The soluble proteins were resolved into at least seven bands by sodium dodecyl sulfate gel electrophoresis. About one-half of the total was four proteins of 8,000 to 12,000 daltons. These were relatively tyrosine rich, and one was a glycoprotein. There was also a cluster of proteins of about 40,000 daltons and two or three in the 20,000- to 25,000-dalton range. The insoluble fraction had an amino acid composition and N-terminal pattern of amino acids very similar to those of the soluble coat proteins. A major difference was the presence of considerable dityrosine in performic acid-oxidized preparations of insoluble coats. Coat antigen including a 60,000-dalton protein not present in extracts of mature spores was detected in extracts of sporulating cells by immunoprecipitation. This large antigen turned over in a pulse-chase experiment. Antibodies to either the array of 8,000- to 12,000-dalton coat polypeptides or to the larger coat proteins reacted with this 60,000-dalton species, suggesting a common precursor for many of the mature coat polypeptides. Spore coats seem to be assembled by processing of proteins and by secondary modifications including perhaps dityrosine formation for cross-linking.  相似文献   

2.
3.
Bacteria assemble complex structures by targeting proteins to specific subcellular locations. The protein coat that encases Bacillus subtilis spores is an example of a structure that requires coordinated targeting and assembly of more than 24 polypeptides. The earliest stages of coat assembly require the action of three morphogenetic proteins: SpoIVA, CotE, and SpoVID. In the first steps, a basement layer of SpoIVA forms around the surface of the forespore, guiding the subsequent positioning of a ring of CotE protein about 75 nm from the forespore surface. SpoVID localizes near the forespore membrane where it functions to maintain the integrity of the CotE ring and to anchor the nascent coat to the underlying spore structures. However, it is not known which spore coat proteins interact directly with SpoVID. In this study we examined the interaction between SpoVID and another spore coat protein, SafA, in vivo using the yeast two-hybrid system and in vitro. We found evidence that SpoVID and SafA directly interact and that SafA interacts with itself. Immunofluorescence microscopy showed that SafA localized around the forespore early during coat assembly and that this localization of SafA was dependent on SpoVID. Moreover, targeting of SafA to the forespore was also dependent on SpoIVA, as was targeting of SpoVID to the forespore. We suggest that the localization of SafA to the spore coat requires direct interaction with SpoVID.  相似文献   

4.
5.
Endospores of Bacillus subtilis are encased in a protein shell, known as the spore coat, composed of a lamella-like inner layer and an electron-dense outer layer. We report the identification and characterization of a gene, herein called cotH, located at 300 degrees on the B. subtilis genetic map between two divergent cot genes, cotB and cotG. The cotH open reading frame extended for 1,086 bp and corresponded to a polypeptide of 42.8 kDa. Spores of a cotH null mutant were normally heat, lysozyme, and chloroform resistant but were impaired in germination. The mutant spores were also pleiotropically deficient in several coat proteins, including the products of the previously cloned cotB, -C, and -G genes. On the basis of the analysis of a cotE cotH double mutant, we infer that CotH is probably localized in the inner coat and is involved in the assembly of several proteins in the outer layer of the coat.  相似文献   

6.
By use of the antigen-antibody techniques we have studied whether asporogenic mutants of Bacillus subtilis can synthesize the spore coat protein. Antibody specific to spore coat protein was prepared and used to demonstrate that the spore coat protein was synthesized at the early stage of sporulation. We report here that asporogenic mutants synthesize the spore coat protein.  相似文献   

7.
Bacterial spores are protected from the environment by a proteinaceous coat and a layer of specialized peptidoglycan called the cortex. In Bacillus subtilis, the attachment of the coat to the spore surface and the synthesis of the cortex both depend on the spore protein SpoIVA. To identify functionally important amino acids of SpoIVA, we generated and characterized strains bearing random point mutations of spoIVA that result in defects in coat and cortex formation. One mutant resembles the null mutant, as sporulating cells of this strain lack the cortex and the coat forms a swirl in the surrounding cytoplasm instead of a shell around the spore. We identified a second class of six mutants with a partial defect in spore assembly. In sporulating cells of these strains, we frequently observed swirls of mislocalized coat in addition to a coat surrounding the spore, in the same cell. Using immunofluorescence microscopy, we found that in two of these mutants, SpoIVA fails to localize to the spore, whereas in the remaining strains, localization is largely normal. These mutations identify amino acids involved in targeting of SpoIVA to the spore and in attachment of the coat. We also isolated a large set of mutants producing spores that are unable to maintain the dehydrated state. Analysis of one mutant in this class suggests that spores of this strain accumulate reduced levels of peptidoglycan with an altered structure.  相似文献   

8.
Bacillus subtilis FtsY is a homolog of the alpha-subunit of mammalian signal recognition particle (SRP) receptor, and is essential for protein translocation and vegetative cell growth. An FtsY conditional null mutant (strain ISR39) can express ftsY during the vegetative stage but not during spore formation. Spores of ISR39 have the same resistance to heat and chloroform as the wild-type, while their resistance to lysozyme is reduced. Electron microscopy showed that the outer coat of spores was incompletely assembled. The coat protein profile of the ftsY mutant spores was different from that of wild-type spores. The amounts of CotA, and CotE were reduced in spore coat proteins of ftsY mutant spores and the molecular mass of CotB was reduced. In addition, CotA, CotB, and CotE are present in normal form at T(8) of sporulation in ftsY mutant cells. These results suggest that FtsY has a pivotal role in assembling coat proteins onto the coat layer during spore morphogenesis.  相似文献   

9.
Amino acid chemoreceptors of Bacillus subtilis.   总被引:2,自引:0,他引:2       下载免费PDF全文
Specificities of chemoreceptors for the 20 common amino acids, toward which Bacillus subtilis shows chemotaxis, were assessed by competition ("jamming") experiments using a modification of the traditional capillary assay, called the "sensitivity capillary assay." Many amino acids were sensed by at least two chemoreceptors. All the highest affinity chemoreceptors for the amino acids were distinct, except glutamate and aspartate, which may share one chemoreceptor, and tyrosine, for which the data could not be collected due to low solubility. The data suggest the hypothesis that each amino acid-chemoreceptor complex binds to a different signaler (from each amino acid-chemoreceptor complex binds to a different signaler (from which signals travel to the flagella to modify behavior appropriately), and that many of the signalers can also bind other attractant-chemoreceptor complexes as antagonists (no signals to flagella).  相似文献   

10.
We report evidence that CotC and CotU, two previously identified components of the Bacillus subtilis spore coat, are produced concurrently in the mother cell chamber of the sporulating cell under the control of σK and GerE and immediately assembled around the forming spore. In the coat, the two proteins interact to form a coat component of 23 kDa. The CotU-CotC interaction was not detected in two heterologous hosts, suggesting that it occurs only in B. subtilis. Monomeric forms of both CotU and CotC failed to be assembled at the surface of the developing spore and accumulated in the mother cell compartment of cells mutant for cotE. In contrast, neither CotU nor CotC accumulated in the mother cell compartment of cells mutant for cotH. These results suggest that CotH is required to protect both CotU and CotC in the mother cell compartment of the sporangium and that CotE is needed to allow their assembly and subsequent interaction at the spore surface.  相似文献   

11.
Bacillus spores are protected by a structurally and biochemically complex protein shell composed of over 50 polypeptide species, called the coat. Coat assembly in Bacillus subtilis serves as a relatively tractable model for the study of the formation of more complex macromolecular structures and organelles. It is also a critical model for the discovery of strategies to decontaminate B. anthracis spores. In B. subtilis, a subset of coat proteins is known to have important roles in assembly. Here we show that the recently identified B. subtilis coat protein CotO (YjbX) has an especially important morphogenetic role. We used electron and atomic force microscopy to show that CotO controls assembly of the coat layers and coat surface topography as well as biochemical and cell-biological analyses to identify coat proteins whose assembly is CotO dependent. cotO spores are defective in germination and partially sensitive to lysozyme. As a whole, these phenotypes resemble those resulting from a mutation in the coat protein gene cotH. Nonetheless, the roles of CotH and CotO and the proteins whose assembly they direct are not identical. Based on fluorescence and electron microscopy, we suggest that CotO resides in the outer coat (although not on the coat surface). We propose that CotO and CotH participate in a late phase of coat assembly. We further speculate that an important role of these proteins is ensuring that polymerization of the outer coat layers occurs in such a manner that contiguous shells, and not unproductive aggregates, are formed.  相似文献   

12.
Two small genes named sscA (previously yhzE) and orf-62, located in the prsA-yhaK intergenic region of the Bacillus subtilis genome, were transcribed by SigK and GerE in the mother cells during the later stages of sporulation. The SscA-FLAG fusion protein was produced from T(5) of sporulation and incorporated into mature spores. sscA mutant spores exhibited poor germination, and Tricine-SDS-PAGE analysis showed that the coat protein profile of the mutant differed from that of the wild type. Bands corresponding to proteins at 59, 36, 5, and 3 kDa were reduced in the sscA null mutant. Western blot analysis of anti-CotB and anti-CotG antibodies showed reductions of the proteins at 59 kDa and 36 kDa in the sscA mutant spores. These proteins correspond to CotB and CotG. By immunoblot analysis of an anti-CotH antibody, we also observed that CotH was markedly reduced in the sscA mutant spores. It appears that SscA is a novel spore protein involved in the assembly of several components of the spore coat, including CotB, CotG, and CotH, and is associated with spore germination.  相似文献   

13.
Spore formation in Bacillus subtilis involves the formation of a thick, proteinaceous shell or coat that is assembled around a specialized membrane known as the outer forespore membrane. Here we present evidence that the assembling coat is tethered to the outer forespore membrane by a 26-amino-acid peptide called SpoVM, which is believed to form an amphipathic helix. We show that proper localization of SpoVM is dependent on SpolVA, a morphogenetic protein that forms the basement layer of the spore coat, and conversely, that proper localization of SpoIVA is dependent on SpoVM. Genetic, biochemical and cytological evidence indicates that this mutual dependence is mediated in part by contact between an amino acid side-chain located near the extreme C-terminus of SpoIVA and an amino acid side-chain on the hydrophilic face of the SpoVM helix. Evidence is also presented that SpoVM adheres to the outer forespore membrane via hydrophobic, amino acid side-chains on the hydrophobic face of the helix. The results suggest that the SpoVM helix is oriented parallel to the membrane with the hydrophobic face buried in the lipid bilayer.  相似文献   

14.
15.
The Bacillus subtilis spore coat consists of three morphological layers: a diffuse undercoat, a striated inner coat and a densely staining outer coat. These layers are comprised of at least 15 polypeptides and the absence of one in particular, CotE, had extensive pleiotropic effects. Only a partial inner coat was present on the spores which were lysozyme-sensitive. The initial rate of germination of these spores was the same as for the wild type but the overall optical density decrease was greater apparently due to the loss of the incomplete spore coat from germinated spores. Suppressors of the lysozyme-sensitive phenotype had some outer coat proteins restored as well as some novel minor polypeptides. These spores still lacked an undercoat and germinated as did those produced by the cotE deletion strain. The CotE protein was synthesized starting at stage II-III of sporulation, long before the appearance of the coat on spores at stage IV-V. Despite its apparent hydrophilic properties, this protein was present in the crude insoluble fraction from sporulating cells. CotE was not solubilized by high or low ionic strength buffers not by detergents used for the solubilization of membrane proteins. Either 8 M urea or 6 M guanidine HC1 was required and dialysis against a low ionic strength buffer resulted in aggregation into long, sticky filaments. Both the CotE and CotT spore coat proteins appeared to be necessary for the formation of these filaments. Each of these proteins contains sequences related to a bovine intermediate filament protein so their interaction could result in an analogous structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Bacterial spores are surrounded by a multilayered proteinaceous shell called the coat. In Bacillus subtilis, a coat protein called CotE guides the assembly of a major subset of coat proteins. To understand how CotE carries out its role in coat morphogenesis, we subjected its gene to mutagenesis and studied the effects of altered versions of CotE on coat formation. We identified regions within the C-terminal 28 amino acids that direct the deposition of the coat proteins CotA, CotB, CotG, CotSA, CotS and 35 kDa and 49 kDa proteins likely to be the spore proteins CotR (formerly known as YvdO) and YaaH respectively. The timing and genetic dependency of CotR accumulation are consistent with control of its gene by sigmaK and GerE. In addition, we identified a 35-amino-acid internal region involved in targeting of CotE to the forespore. Finally, we found that sequences within this 35-amino-acid region as well as within an 18-amino-acid stretch in the N-terminus of CotE direct the formation of CotE multimers, most probably homooligomers. These results suggest that: (i) most interactions between CotE and the coat proteins assembled under CotE control take place at the CotE C-terminus; (ii) an internal region of CotE connects it with the forespore surface; and (iii) interactions between CotE molecules depend on residues within an 18-amino-acid region in the N-terminal half of CotE.  相似文献   

17.
We report evidence that the CotC polypeptide, a previously identified component of the Bacillus subtilis spore coat, is assembled into at least four distinct forms. Two of these, having molecular masses of 12 and 21 kDa, appeared 8 h after the onset of sporulation and were probably assembled on the forming spore immediately after their synthesis, since no accumulation of either of them was detected in the mother cell compartment, where their synthesis occurs. The other two components, 12.5 and 30 kDa, were generated 2 h later and were probably the products of posttranslational modifications of the two early forms occurring directly on the coat surface during spore maturation. None of the CotC forms was found either on the spore coat or in the mother cell compartment of a cotH mutant. This indicates that CotH serves a dual role of stabilizing the early forms of CotC and promoting the assembly of both early and late forms on the spore surface.  相似文献   

18.
The Bacillus subtilis spore is encased in a resilient, multilayered proteinaceous shell, called the coat, that protects it from the environment. A 181-amino-acid coat protein called CotE assembles into the coat early in spore formation and plays a morphogenetic role in the assembly of the coat's outer layer. We have used a series of mutant alleles of cotE to identify regions involved in outer coat protein assembly. We found that the insertion of a 10-amino-acid epitope, between amino acids 178 and 179 of CotE, reduced or prevented the assembly of several spore coat proteins, including, most likely, CotG and CotB. The removal of 9 or 23 of the C-terminal-most amino acids resulted in an unusually thin outer coat from which a larger set of spore proteins was missing. In contrast, the removal of 37 amino acids from the C terminus, as well as other alterations between amino acids 4 and 160, resulted in the absence of a detectable outer coat but did not prevent localization of CotE to the forespore. These results indicate that changes in the C-terminal 23 amino acids of CotE and in the remainder of the protein have different consequences for outer coat protein assembly.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号