首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tamoxifen (TAM) is a triphenylethylene anti-oestrogen, commonly used in the treatment of breast cancer. Patients receiving tamoxifen therapy may experience both de novo and acquired resistance. As one of the mechanisms for this may be extensive peripheral bio-transformation of tamoxifen, there has been considerable interest in the pharmacokinetics and metabolism of tamoxifen. A reversed-phase high-performance liquid chromatography separation has been developed to determine the levels of tamoxifen and its major metabolites in human plasma. The method is highly sensitive (2 ng/ml) and selective for tamoxifen, cis-tamoxifen (CIS), 4-hydroxytamoxifen (4-OH) and desmethyltamoxifen (DMT). A μBondapak C18 10 μm column (30 cm × 3.9 mm I.D.) was used, with a mobile phase of methanol-1% triethylamine at pH 8 (89:11, v/v). Sample preparation was carried out using a C2 (500 mg sorbent, 3 ml reservoirs) solid phase extraction method, and extraction efficiencies were approximately 60% for TAM and its metabolites. Accuracy and precision, as determined by spiking plasma samples with a mixture of tamoxifen and its metabolites, ranged from 85–110% (± 5–10%) at 1 μg/ml, 101–118% (± 8–20%) at 0.1 μg/ml and 111–168% (± 43–63%) at 0.01 μg/ml. Results from 59 patients show mean values of 54 ng/ml for 4-OH; 190 ng/ml for DMT; 93 ng/ml for TAM and 30 ng/ml for CIS (detected in three patients only). This methodology can be applied routinely to the determination of TAM and its metabolites in plasma from patients undergoing therapy.  相似文献   

2.
A selective HPLC method is described for the determination of cefpodoxime levels in plasma and sinus mucosa. Sample preparation included solid-phase extraction with a C8 cartridge. Cefpodoxime and cefaclor (internal standard) were eluted with methanol and analyzed on an optimised system consisting of a C18 stationary phase and a ternary mobile phase (0.05 M acetate buffer pH 3.8—methanol—acetonitrile, 87:10:3, v/v) monitored at 235 nm. Linearity and both between- and within-day reproducibility were assessed for plasma and sinus mucosa samples. Inter-assay coefficients of variation were lower than 13.6% (n = 10) for plasma (0.2 μg/ml) and lower than 12.4% (n = 5) for sinus mucosa (0.25 μg/g). The quantification limit was 0.05 μg/ml for plasma and 0.13 μg/g for tissue. The method was used to study the diffusion of cefpodoxime in sinus mucosa.  相似文献   

3.
A simultaneous assay for droperidol and flunitrazepam by high-performance liquid chromatography has been developed and applied to blood samples collected during an acute normovolemic haemodilution under general anaesthesia. Haemodilution blood samples were stored at +4°C to be transfused, if required, to a patient during the post-surgical phase. A C18 Supelclean cartridge was used for solid-phase extraction, and the recoveries were 74% and 89%, respectively, for droperidol and flunitrazepam. Compounds were chromatographed on a C18 Novapak column at 250 nm, with a mobile phase of acetonitrile—10 mM ammonium acetate buffer (pH 6.7) (45:55, v/v). Nitrazepam was used as the internal standard. For both drugs, the assay was linear up to 500 μg/l, and the detection limits were 20 and 10 μg/l for droperidol and flunitrazepam, respectively, and their observed levels in haemodilution samples were 93 ± 82 μg/l and 76 ± 107 μg/l, respectively. Some of the values for flunitrazepam were higher than the minimal efficient concentration, defined as the plasma level observed at the time of the patient wakening from anaesthesia (12 ± 4 μg/l). According to our results, haemodilution sampling can be performed before induction of anaesthesia. When the blood is collected after the anaesthetic induction, it seems necessary to determine levels of the two drugs in haemodilution samples to avoid side-effects.  相似文献   

4.
A high-performance liquid chromatographic method has been developed and tested for simultaneous extraction, elution and determination of doxorubicin and prochlorperazine content in human plasma samples. The procedure consists of extraction through a conditioned C18 solid-phase extraction cartridge, elution from a Spherisorb C8 reversed-phase column by an isocratic mobile phase (60% acetonitrile, 15% methanol and 25% buffer) followed by detection with electrochemical and fluorescence detectors. Recovery of doxorubicin and prochlorperazine from pooled human plasma samples (n=3) containing 100 ng/ml of the two drugs was 77.8±3.5% and 89.1±6.0%, respectively. The lower limits of quantitation for doxorubicin and prochlorperazine in plasma samples were 6.25 ng/ml and 10 ng/ml, respectively. A linear calibration curve was obtained for up to 2 μg/ml of doxorubicin and prochlorperazine. This combination method may be of particular value in clinical studies where phenothiazines such as prochlorperazine are used to enhance retention of doxorubicin in drug resistant tumor cells.  相似文献   

5.
Synthetic vitamin K3 (VK3, 2-methyl-1,4-naphthoquinone, or menadione) has been found to exhibit antitumor activity against various human cancer cells at relative high dose. Parallel to our study on the mechanism of VK3 action and for future clinical trials in Taiwan, we developed a simple, sensitive and accurate high-performance liquid chromatographic method for the determination of VK3 in biological fluids. VK3 was extracted from the plasma samples with n-hexane. The chromatographic separation employed an ODS analytical column (5 μm, 250 × 4.6 mm I.D.) with a mobile phase of methanol-water (70:30 v/v) and UV detection at 265 nm. On completely drying of the extraction solution, n-hexane, by a stream of nitrogen, menadione was lost to a great extent. Methanol (70%, 200 μl) was added to the extraction solvent after extraction and centrifugation to prevent the loss of menadione. The absolute recovery was 82.4±7.69% (n = 7). The within-day and between-day calibration curves of VK3 in plasma in the ranges of interest (0.01–10.00 μg/ml; 0.01–5.00 μg/ml) showed good linearity (r>0.999) and acceptable precision. The limit of quantitation of VK3 was 10 ng/ml) showed good method has been succesfully applied to a pilot pharmacokinetic study of VK3 in rabbits receiving an intravenous high-dose bolus injection of 75 mg menadiol sodium diphosphate (Synkayvite). The pharmacokinetic properties of menadione could be described adequately by an open two-compartment model. The mean half-life of menadiol (transformation to menadione) was 2.60±0.12 min. The elimination half-life, volume of distribution and plasma clearance of menadione were 26.3±2.97 min, 25.7±0.78 1, and 0.68±0.10 1/min, respectively.  相似文献   

6.
A gas chromatographic–mass spectrometric isotope dilution method was developed for analysis of ascorbate on 10 μl samples of plasma. This assay was reproducible (standard deviation of less than 4%) and gave values for plasma ascorbate content within 8% of our previously published gas chromatographic–mass spectrometric method. Non-specific sample preparation allowed other analytes to be determined on the same sample by adjusting data acquisition parameters and adding the appropriate internal standard. Analysis on 28 subjects fell within the expected range for plasma ascorbate 68±29 μm (11.9±5.0 μg/ml) and established a normal range for plasma threonate of 28.1±2.4 μm (3.8±0.4 μg/ml).  相似文献   

7.
As a part of a pilot clinical study, a high-performance reversed-phase liquid chromatography analysis was developed to quantify temozolomide in plasma and urine of patients undergoing a chemotherapy cycle with temozolomide. All samples were immediately stabilized with 1 M HCl (1 + 10 of biological sample), frozen and stored at −20°C prior to analysis. The clean-up procedure involved a solid-phase extraction (SPE) of clinical sample (100 μl) on a 100-mg C18-endcapped cartridge. Matrix components were eliminated with 750 μl of 0.5% acetic acid (AcOH). Temozolomide was subsequently eluted with 1250 μl of methanol (MeOH). The resulting eluate was evaporated under nitrogen at RT and reconstituted in 200 μl of 0.5% AcOH and subjected to HPLC analysis on an ODS-column (MeOH-0.5% AcOH, 10:90) with UV detection at 330 nm. The calibration curves were linear over the concentration range 0.4–20 μg/ml and 2–150 μg/ml for plasma and urine, respectively. THe extraction recovery of temozolomide was 86–90% from plasma and 103–105% from urine over the range of concentrations considered. The stability of temozolomide was studied in vitro in buffered solutions at RT, and in plasma and urine at 37°C. An acidic pH (<5–6) shoul be maintained throughout the collection, the processing and the analysis of the sample to preserve the integrity of the drug. The method reported here was validated for use in a clinical study of temozolomide for the treatment of metastatic melanoma and high grade glioma.  相似文献   

8.
An automated high-performance liquid chromatographic method for the determination of the diuretic drug furosemide has been established. Dog plasma was injected directly into a two-column system with a BSA—ODS (ODS column coated with bovine serum albumin) precolumn and a C18 analytical column for the separation of furosemide. The two columns were automatically switched. Furosemide remained trapped on the precolumn while proteins were eluted to waste. After column switching, furosemide was washed onto the analytical column and analysed without interference. The greatest advantage of the method is its easy performance without manual sample preparation; it requires no extraction or deproteinization. The method allows determination of 0.1–10 μg/ml of furosemide with accuracy and precision comparable with previously reported values. The coefficients of variation obtained from replicate measurements of 1 μg/ml and 5 μg/ml samples were 1.65% and 2.40%, respectively. This method was used to measure the plasma levels of furosemide in beagle dogs to whom the drugs was administered, as a reference, in a toxicological study.  相似文献   

9.
A sensitive high-performance liquid chromatographic method using fluorescence detection has been developed for sotalol determination in small plasma samples of children and newborns with limited blood volume. In sample sizes of 100 μl of plasma, sotalol was extracted using an internal standard and solid-phase extraction columns. Chromatographic separation was performed on a Spherisorb C6 column of 150×4.6 mm I.D. and 5 μm particle size at ambient temperature. The mobile phase consisted of acetonitrile–15 mM potassium phosphate buffer (pH 3.0) (70:30, v/v). The excitation wavelength was set at 235 nm, emission at 300 nm. The flow-rate was 1 ml/min. Sotalol and the internal standard atenolol showed recoveries of 107±8.9 and 97±8.1%, respectively. The linearity range for sotalol was between 0.07 and 5.75 μg/ml, the limit of quantitation 0.09 μg/ml. Precision values expressed as percent relative standard deviation of intra-assay varied between 0.6 and 13.6%, that of inter-assay between 2.4 and 14.4%. Accuracy varied between 86.1 and 109.8% (intra-assay) and 95.4 and 103.3% (inter-assay). Other clinically used antiarrhythmic drugs did not interfere. As an application of the assay, sotalol plasma concentrations in a 6-year-old child with supraventricular tachycardia treated with oral sotalol (3.2 mg/kg per day) are reported.  相似文献   

10.
A high-performance liquid chromatographic (HPLC) assay has been developed for the determination of the antifungal drug fluconazole in saliva and plasma of patients infected with the human immunodeficiency virus (HIV). Samples can be heated at 60°C for 30 min to inactivate the virus without loss of the analyte. The sample pretreatment involves a liquid-liquid extraction with chloroform-1-propanol (4:1, v/v). The chromatographic analysis is performed on a Lichrosorb RP-18 (5 μm) column by isocratic elution with a mobile phase of 0.01 M acetate buffer (pH 5.0)-methanol (70:30, v/v) and ultraviolet (UV) detection at 261 nm. The lower limit of is 100 ng/ml in plasma (using 500-μl samples) and 1 μg/ml in saliva (using 250-μl samples) and the method is linear up to 100 μg/ml in plasma and saliva. At a concentration of 5 μg/ml the within-day and between-day precision in plasma are 7.1 and 5.7%, respectively. In saliva the within-day and between-day precision is 10.8% (at 5 μg/ml). The methodology is now being used in pharmacokinetic studies in HIV-infected patients in our hospital.  相似文献   

11.
A rapid clean-up procedure based on ion-pair solid-phase extraction (SPE) for the high-performance liquid chromatographic (HPLC) determination of spectinomycin in swine, calf and chicken plasma at a limit of detection of 50 ng/ml is described. After dilution with water and adjustment of the pH to approximately 5.6, the plasma is applied to a high-hydrophobic C18 SPE column treated with sodium dioctylsulphosuccinate. Spectinomycin is eluted with methanol and derivatized with 2-naphthalene sulphonyl chloride prior to chromatography. The HPLC set-up consists of a dual-column system using two Chromspher silica columns and dichloromethane—acetonitrile—ethyl acetate—acetic acid, in different ratios, as mobile phases. Detection is performed at 250 nm. Quantification is carried out using external standards prepared in blank cleaned plasma. Mean recoveries were 83 ± 3% (n = 5), 93 ± 6% (n = 5) and 92 ± 6% (n = 6) for swine, calf and chicken plasma, respectively, at the 0.1 μg/ml level.  相似文献   

12.
A simple and reproducible method for the analysis of ampicillin in human serum was developed. Serum samples were extracted using solid-phase extraction disk cartridges containing a sorbent of styrene divinyl/benzene. Extracts were separated by reversed-phase C18 high-performance liquid chromatography with UV detection at 220 nm. The mobile phase consisted of acetonitrile–10 mM NaH2PO4 (6.5:93.5, v/v). Using this extraction procedure, recovery from serum was 98.4±5.6%. The quantitation limit was 0.19 μg/ml using 0.5 ml of serum. The calibration curves from 0.19 to 9.41 μg/ml were linear with correlation coefficients of 0.999. This method is suitable for therapeutic drug monitoring of ampicillin (ABPC) after oral administration of lenampicillin hydrochloride.  相似文献   

13.
A simple procedure for the simultaneous determination of modafinil, its acid and sulfone metabolites in plasma is described. The assay involved an extraction of the drug, metabolites and internal standard from plasma with a solid-phase extraction using C18 cartridges. These compounds were eluted by methanol. The extract was evaporated to dryness at 40°C under a gentle stream of nitrogen. The residue was redissolved in 250 μl of mobile-phase and a 30 μl aliquot was injected via an automatic sampler into the liquid chromatograph and eluted with the mobile-phase (26%, v/v acetonitrile in 0.05 M orthophosphoric acid buffer adjusted to pH 2.6) at a flow-rate of 1.1 ml/min on a C8 Symmetry cartridge column (5 μm, 150 mm×3.9 mm, Waters) at 25°C. The eluate was detected at 225 nm. Intra-day coefficients of variation ranged from 1.0 to 2.9% and inter-day coefficients from 0.9 to 6.1%. The limits of detection and quantitation of the assay were 0.01 μg/ml and 0.10 μg/ml respectively.  相似文献   

14.
7-[(2,2-Dimethyl)propyl)]-1-methylxanthine (I, Lab code MX2/120) is a new potent antibronchospastic agent. A rapid and simple HPLC assay for I in guinea pig plasma has been developed. Compound I was extracted from plasma with dichloromethane by a solid-phase extraction procedure, after adding 1,3-dimethyl-7-pentylxanthine at a concentration of 5 μg/ml as the internal standard (I.S.). The extraction residue was redissolved in water—acetonitrile and chromatographed on a RP-18 reversed-phase column. The eluate was monitored by spectrophotometric detection at 280 nm. The method showed good linearity over the range 0.1–20 μg/ml (r = 0.9998) and is precise (C.V. × Student's T-TEST = 1.84%) and accurate (mean recovery ± limit of CONFIDENCE = 100.25 ± 0.34). The HPLC assay was successfully applied to the determination of the pharmacokinetic profile of I after intravenous and oral administration in guinea pigs. The main pharmacokinetic parameters are presented.  相似文献   

15.
A rapid and sensitive high-performance liquid chromatography–electrospray MS method has been developed to determine tissue distribution of betulinic acid in mice. The method involved deproteinization of these samples with 2.5 volumes (v/w) of acetonitrile–ethanol (1:1) and then 5 μl aliquots of the supernatant were injected onto a C18 reversed-phase column coupled with an electrospray MS system. The mobile phase employed isocratic elution with 80% acetonitrile for 10 min; the flow-rate was 0.7 ml/min. The column effluent was analyzed by selected ion monitoring for the negative pseudo-molecular ion of betulinic acid [M−H] at m/z 455. The limit of detection for betulinic acid in biological samples by this method was approximately 1.4 pg and the coefficients of variation of the assay (intra- and inter-day) were generally low (below 9.1%). When athymic mice bearing human melanoma were treated with betulinic acid (500 mg/kg, i.p.), distribution was as follows: tumor, 452.2±261.2 μg/g; liver, 233.9±80.3 μg/g; lung, 74.8±63.7 μg/g; kidney, 95.8±122.8 μg/g; blood, 1.8±0.5 μg/ml. No interference was noted due to endogenous substances. These methods of analysis should be of value in future studies related to the development and characterization of betulinic acid.  相似文献   

16.
A reversed-phase high-performance liquid chromatographic method was developed to quantify a decapeptide anticoagulant in rat and monkey plasma. The compound and internal standard, a nonapeptide analogue, were extracted from plasma with an amino solid-phase extraction column with an extraction efficiency in the range 75–90%. A C18 analytical column was used to separate the analytes by gradient elution followed by ultraviolet detection at 215 nm. Quantification of the decapeptide over the concentration range 0.1–10.1 μg/ml resulted in an assay relative error and relative standard deviation both less than 10%. The anticoagulant decapeptide was stable in both rat and monkey plasma frozen at −20°C.  相似文献   

17.
This paper describes the development of an isocratic reversed-phase high-performance liquid chromatographic method for the routine analysis of recombinant interleukin-2 (rIL-2) in liposome samples. The chromatographic system employed a C4 column maintained at 30°C eluted with 52.5% (w/w) acetonitrile in water, containing 100 mM NaClO4 and 10 mM HClO4. To remove phospholipid interference the chromatographic method was combined with a lipid-extraction procedure. No significant loss of rIL-2 was noted upon inclusion of this extraction step. The protein eluted from the column with a capacity factor (k′) of 5.8. The method was validated for robustness, linearity, precision and reproducibility. It was shown that the method was linear over a sample concentration range of 1–100 μg/ml. Upon assessment of the intra-day and inter-day precision, the relative standard deviations (RSD) were within the range of the methodical error (approximately 5%), except at the lower concentration of 10 μg/ml, where the intra-day RSD was relatively high (17.8%). The recovery of rIL-2 upon liposome preparation and subsequent analysis of the samples was in the range 94±9%. The results indicate that the method is suitable for routine quantitation of rIL-2 in liposomal samples.  相似文献   

18.
This paper describes a high-performance liquid chromatographic method with ultraviolet absorbance detection at 304 nm for the determination of 6-chloro-5-(1-naphthyloxy)-2-methylthio benzimidazole (αBIOF10) — a new fasciolicide agent — and its sulphoxide (SOαBIOF10), in plasma and urine. It requires 2 ml of biological fluid, an extraction using Sep-Pak cartridges, and methanol for drug elution. Analysis is performed on a μBondapak C18 (10 μm) column, using methanol–acetonitrile–water (40:30:30, v/v) as the mobile phase. Results showed that the assay is sensitive: 12 ng/ml for αBIOF10 and SOαBIOF10 in plasma and 3.6 ng/ml for both compounds in urine. The response was linear between 0.195 and 12.5 μg/ml. Maximum intra-day coefficient of variation was 5.3%. Recovery obtained was 97.8% for both αBIOF10 and SOαBIOF10. In urine, recovery was 99.6% and 93.1% for αBIOF10 and SOαBIOF10 respectively. The method was used to perform a preliminary pharmacokinetic study in two sheep and was found to be satisfactory.  相似文献   

19.
Indomethacin and mefenamic acid are widely used clinically as non-steroidal anti-inflammatory agents. Both drugs have also been found effective to produce closure of patent ductus arteriosus in premature neonates. A simple, rapid, sensitive and reliable HPLC method is described for the determination of indomethacin and mefenamic acid in human plasma. As these drugs are not applied together, the compounds are alternately used as analyte and internal standard. Plasma was deproteinized with acetonitrile, the supernatant fraction was evaporated to dryness and the resulting residue was reconstituted in the mobile phase and injected into the HPLC system. The chromatographic separation was performed on a C18 column (250 × 4.6 mm I.D.) using 10 mM phosphoric acid—acetonitrile (40:60, v/v) as the mobile phase and both drugs were detected at 280 nm. The calibration graphs were linear with a correlation coefficient (r) of 0.999 or better from 0.1 to 10 μg/ml and the detection limits were 0.06 μg/ml for indomethacin and 0.08 μg/ml for mefenamic acid, for 50μl plasma samples. The method was not interfered with by other plasma components and has been found particularly useful for paediatric use. The within-day precision and accuracy of the method were evaluated for three concentrations in spiked plasma samples. The coefficients of variation were less than 5% and the accuracy was nearly 100% for both drugs.  相似文献   

20.
A method for simultaneous determination of 5-hydroxy-N-methylpyrrolidone and 2-hydroxy-N-methylsuccinimide in urine is described. These compounds are metabolites of N-methyl-2-pyrrolidone, a powerful and widely used organic solvent. 5-Hydroxy-N-methylpyrrolidone and 2-hydroxy-N-methylsuccinimide were purified from urine by adsorption to a C8 solid-phase extraction column and then elution by ethyl acetate–methanol (80:20). After evaporation, the samples were derivatised at 100°C for 1 h by bis(trimethylsilyl)trifluoroacetamide. Ethyl acetate was then added and the samples were analysed by gas chromatography–mass spectrometry in the electron impact mode. The extraction recovery for 5-hydroxy-N-methylpyrrolidone was about 80% while that for 2-hydroxy-N-methylsuccinimide was about 30%. The intra-day precision for 5-hydroxy-N-methylpyrrolidone was 2–4% and the between-day precision 4–21% (4 and 60 μg/ml). The intra-day precision for 2-hydroxy-N-methylsuccinimide was 4–8% and the between-day precision 6–7% (2 and 20 μg/ml). The detection limit was 0.2 μg/ml urine for both compounds. The method is applicable for analysis of urine samples from workers exposed to N-methyl-2-pyrrolidone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号