首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orientated growth is described in colonies of Membranipora membranacea (L.) growing on the large brown seaweed Saccorhiza polyschides (Lightf.) Batt. On average, 60% of the growth of the colonies was directed proximally along the long axis of the plant, irrespective of the region of the plant on which the colonies were growing or their proximity to its primary meristem. These results seem to rule out the possibility that orientated growth in Membranipora is a response to an age dependent polarity in the host plant, since the tissue ages in opposite directions in the lamina and stipe yet the growth of Membranipora is orientated in the same direction on both. The possibility that directional growth in this species may be a rheopositive response is discussed.  相似文献   

2.
Herbivory simulation studies, through mechanical removal of leaf tissue, provide valuable insight about plant compensation and tolerance to defoliation. A mesocosm experiment was conducted to examine the effects of defoliation on growth and biomass accumulation of Hygrophila polysperma and thereby determine the critical level of herbivory necessary to achieve significant reduction in growth of this invasive plant. The data collected during the experiment were used to develop an empirical plant growth model to examine the usefulness of a model-based approach for a priori understanding of plant response to defoliation. The results of the mesocosm experiment showed that defoliation significantly influenced growth and biomass accumulation of hygrophila. The empirical plant growth model accurately simulated plant growth response to herbivory across treatments. Based on the results of the mesocosm experiment, an insect defoliator that causes complete defoliation of hygrophila at least at monthly intervals may be able to reduce biomass and growth of hygrophila. The ability of the mathematical model to predict the effects of defoliation on hygrophila suggest that it could be a useful tool for the selection of effective biological control agents.  相似文献   

3.
The effectiveness of plant growth – promoting bacteria is variable under different biotic and abiotic conditions. Abiotic factors may negatively affect the beneficial properties and efficiency of the introduced PGPR inoculants. The aim of this study was to evaluate the effect of plant growth – promoting rhizobacteria on plant growth and on the control of foot and root rot of tomatoes caused by Fusarium solani under different soil salinity conditions. Among the five tested strains, only Pseudomonas chlororaphis TSAU13, and Pseudomonas extremorientalis TSAU20 were able to stimulate plant growth and act as biological controls of foot and root rot disease of tomato. The soil salinity did not negatively affect the beneficial impacts of these strains, as they were able to colonize and survive on the roots of tomato plants under both saline and non-saline soil conditions. The improved plant height and fruit yield of tomato was also observed for plants inoculated with P. extremorientalis TSAU20. Our results indicated that, saline condition is not crucial factor in obtaining good performance with respect to the plant growth stimulating and biocontrol abilities of PGPR strains. The bacterial inoculant also enhanced antioxidant enzymes activities thereby preventing ROS induced oxidative damage in plants, and the proline concentrations in plant tissue that play an important role in plant stress tolerance.  相似文献   

4.
The overall effect of a live soil inoculum collected from nature on plant biomass is often negative. One hypothesis to explain this phenomenon is that the overall net pathogenic effect of soil microbial communities reduces plant performance. Induced plant defenses triggered by the application of the plant hormones jasmonic acid (JA) and salicylic acid (SA) may help to mitigate this pathogenic effect of live soil. However, little is known about how such hormonal application to the plant affects the soil and how this, in turn, impacts plant growth. We grew four plant species in sterilized and inoculated live soil and exposed their leaves to two hormonal treatments (JA and SA). Two species (Jacobaea vulgaris and Cirsium vulgare) were negatively affected by soil inoculation. In these two species foliar application of SA increased biomass in live soil but not in sterilized soil. Two other species (Trifolium repens and Daucus carota) were not affected by soil inoculum and for these two species foliar application of SA reduced plant biomass in both the sterilized and live soil. Application of JA reduced plant biomass in both soils for all species. We subsequently carried out a multiple generation experiment for one of the plant species, J. vulgaris. In each generation, the live soil was a mixture of 10% soil from the previous generation and 90% sterilized soil and the same hormonal treatments were applied. The negative effects of live soil on plant biomass were similar in all four generations, and this negative effect was mitigated by the application of SA. Our research suggests that the application of SA can mitigate the negative effects of live soil on plant growth. Although the inoculum of soil containing a natural live soil microbial community had a strong negative effect on the growth of J. vulgaris, we found no evidence for an increase or decrease in negative plant-soil feedback in either the control or the SA treated plants. Also plant performance did not decrease consistently with succeeding generations.  相似文献   

5.
《Journal of Asia》2022,25(3):101971
The symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF) improves plant growth and increases its resistance to pests and diseases. Mycorrhizal fungi are among the specialized fungi associated with the rhizosphere and are completely dependent on plant organic carbon. In this research tomato, Solanum lycopersicum L. was used as the host plant to evaluate the interaction effects between inoculation of tomato plant with AMF and feeding of tomato leaf miner, Tuta absoluta (Meyrick). In addition, plant growth parameters and growth rate of insect were assessed. The mycorrhizal treatment included a mixture of four fungal species (Funneliformis mosseae, Rhizophagus intraradices, R. irregularis and Glomus iranicus). The results of the experiment showed that tomato plant roots were well colonized (66.29%) by AMF and there was a significant mutual relationship between the insects feeding on the plants and the fungi. Feeding by the insects on plants inoculated with the fungus increased percentage of colonization by AMF in plants infested with the insect as compared to the control plants. The results also indicated that growth parameters and phosphorus content of the plants inoculated with fungi significantly increased compared to the control group. Moreover, significantly lower growth rate and consumption index observed in the T. absoluta larvae were fed on the leaves of plants treated with AMF compared to leaves of plants not inoculated with AMF.  相似文献   

6.
In herbivorous insects, the interaction between adult preference and progeny performance on specific host plants is modified by maternal feeding experience and host plant quality. Ultimately, changes in the strength of this interaction can affect insect population dynamics. In this study, we hypothesized that adult host plant preference influences progeny performance through a maternal feeding experience × host plant interaction, that is, the effect of adult feeding experience on progeny performance will depend on the host plant. Second, that decoupling of the preference–performance relationship due to host switching results in different population vital rates changing population dynamics. An increase in development time and a decrease in body size of individuals in the alternate host should decrease population growth. We tested these hypotheses using two lines of the tortoise beetle Chelymorpha varians Blanchard fed with two hosts (Convolvulus arvensis and Calystegia sepium). Maternal feeding experience treatments were crossed with host plant species, and the offspring’s developing time and adult size were measured. The host plant influence on the beetle’s population vital rates was tested using stage-structured matrix population models and life table response experiments. Host plant preference affected offspring body size through a host plant effect that contributed to adaptive life history responses only in the better quality host. C. varians’ population growth was positive when fed with either host; comparatively, however, C. sepium had a negative effect on growth by reducing all transition probabilities of the life cycle stages of the beetle. Here, we show that individuals of C. varians prefer and perform differently on distinct hosts and that these patterns influence population vital rates in different ways. When beetles prefer the host plant where their progeny performs best, life history responses and life stage transitions lead to higher population growth; otherwise, growth rate decreases.  相似文献   

7.
The enzyme 1-aminocyclopropane-1-carboxylate deaminase converts ACC, the precursor of the plant hormone ethylene to α-ketobutyrate and ammonium. The enzyme has been identified in few soil bacteria, and is proposed to play a key role in plant growth promotion. In this study, the isolates of plant growth promoting rhizobacteria were screened for ACC deaminase activity based on their ability to grow on ACC as a sole nitrogen source. The selected isolates showed the presence of other plant growth promoting characteristics such as IAA production, phosphate solubilization and siderophore production. The role of ACC deaminase in lowering ethylene production under cadmium stress condition was also studied by measuring in vitro ethylene evolution by wheat seedlings treated with ACC deaminase positive isolates. Nucleic acid hybridization confirmed the presence of ACC deaminase gene (acdS) in the bacterial isolates.  相似文献   

8.
黄土丘陵半干旱区柠条林株高生长过程新模型   总被引:1,自引:1,他引:0  
黄土丘陵半干旱区柠条林的株高生长不随时间单调增加,在生长末期因生长动力小于生长阻力,株高随时间小幅度减小。采用宁夏固原上黄生态站柠条林的生长观测资料,以经典Logistic方程为基础,添加了生长阻力因素,建立了柠条林生长的改进模型,使得生长速率在生长末期出现负值;并以高密度柠条成林多年生长观测数据为依据,建立了连年生长模型。用数学建模和统计检验的方法对数据进行处理,其结果表明,改进模型较Logistic方程具有更高的拟合度和相关系数。建立的模型与传统生长方程不同,由于微分方程中引入了阻力因子,故生长曲线中存在极值坐标且不具有严格单调性。将多年的株高生长曲线综合到一个坐标系内后,新模型中位置参数a与内禀生长率b的比值随着生长呈现逐渐增大的趋势。改进模型的生长顶点出现在8月,与柠条林株高的实际生长过程吻合;计算了新模型的生长顶点与生长期结束时的株高的差值,并将该值记为生长损失。由于柠条林的灌丛较为矮小,在越冬时干梢现象对株高的影响不可忽略,该过程导致生长方程中第二年初始点小于第一年最末点;在考虑了该现象后所建立的连年生长模型中,2002年和2003年干稍现象的终止点位于2月,与植物生长的节律吻合。本研究为描述半干旱区灌木林生长过程提供了依据。  相似文献   

9.
土著菌根真菌和混生植物对羊草生长和磷营养的影响   总被引:1,自引:0,他引:1  
雷垚  郝志鹏  陈保冬 《生态学报》2013,33(4):1071-1079
植物种间相互作用直接影响植物生长、根系可塑性及养分吸收,而与植物共生的丛枝菌根真菌可以改变植物个体和种间养分资源的分配,具有协调种间竞争的潜力.以我国北方草甸草原建群种羊草(Leymus chinensis)和混生植物紫花苜蓿(Medicago sativa)及独行菜(Lepidium spetalum)为供试植物,通过模拟盆栽试验,研究了土著菌根真菌和混生植物对羊草生长、根系形态及磷营养的影响.试验结果表明,土著菌根真菌能够与羊草及紫花苜蓿形成良好共生,而独行菜根内基本未形成菌根共生结构.土著菌根真菌显著降低了羊草及独行菜的生物量,但促进了紫花苜蓿的生长;混种紫花苜蓿显著促进了羊草的生长,而混种独行菜则显著抑制了羊草的生长.土著菌根真菌对羊草根系形态的影响表现出与植株生物量类似的趋势,但不同混生植物对羊草根系生长均无显著影响.土著菌根真菌和混生植物对羊草植株磷含量均无显著影响.与混生植物相比,羊草具有较高的比根长和磷吸收能力,这也解释了其负向菌根依赖性.研究证实了菌根真菌和植物种间相互作用均是影响草原优势植物生长和根系发育的重要因素,深入研究其交互作用对于科学管理草地生态系统,维持植物群落的稳定性和生态系统生产力具有重要意义.  相似文献   

10.
The production of phytohormones by plant-growth promoting rhizobacteria is considered to be an important mechanism by which these bacteria promote plant growth. In this study the importance of indole-3-acetic acid (IAA) produced by Azospirillum brasilense Sp245 in the observed plant growth stimulation was investigated by using Sp245 strains genetically modified in IAA production. Firstly wild-type A. brasilense Sp245 and an ipdC knock-out mutant which produces only 10% of wild-type IAA levels (Vande Broek et al., J Bacteriol 181:1338–1342, 1999) were compared in a greenhouse inoculation experiment for a number of plant parameters, thereby clearly demonstrating the IAA effect in plant growth promotion. Secondly, the question was addressed whether altering expression of the ipdC gene, encoding the key enzyme for IAA biosynthesis in A. brasilense, could also contribute to plant growth promotion. For that purpose, the endogenous promoter of the ipdC gene was replaced by either a constitutive or a plant-inducible promoter and both constructs were introduced into the wild-type strain. Based on a greenhouse inoculation experiment it was found that the introduction of these recombinant ipdC constructs could further improve the plant-growth promoting effect of A. brasilense. These data support the possibility of constructing Azospirillum strains with better performance in plant growth promotion.  相似文献   

11.
The application of ectomycorrhizal (ECM) fungi on forest nursery production is regarded as part of good management practice. However, before employing large scale inoculations in a nursery the interaction between ECM symbionts, growth substrate and fertilisation input should be studied to select the most suitable nursery practices for promoting plant growth and ECM colonisation. In this study, seedlings of Quercus ilex were inoculated with Paxillus involutus, Hebeloma mesophaeum or Cenococcum geophilum and grown in three different substrates commonly used in forest nurseries: peat-based compost, forest soil or composted pine bark. The effect of various fertilisation regimes was also studied. The choice of substrate had a significant effect on plant growth and ECM colonisation. The most appropriate combination of substrate and ECM fungus for Q. ilex growth and nutrition was peat and H. mesophaeum. Plants grown on a peat-based compost and inoculated with H. mesophaeum had a significantly greater biomass and leaf phosphorus concentration without fertilisation. Composted pine bark was found not to be suitable for growth or for mycorrhization. If the appropriate growth substrate is selected, it is possible to replace the use of chemical fertilisers by inoculation with selected ECM fungi. This results in a significant increase in plant development, and thus ECM fungi can be recommended as a more environmental friendly biotechnological approach to plant management in the nursery.  相似文献   

12.
Piper nigrum is an interesting plant to study the endophytic microbial factors affecting plant growth because of its unique features. Endophytic bacterial isolation from the plant resulted in the isolation of twelve bacterial isolates which were screened for various plant growth promoting properties like phosphate solubilization, ACC deaminase production, siderophore production etc. Interestingly, seven isolates were found to have IAA biosynthetic potential. Bacterial isolates with multiple plant growth promoting properties were studied for their growth promoting effect on Vigna radiata seedlings. This resulted in the identification of Klebsiella sp. (PnB 10) and Enterobacter sp. (PnB 11) as the isolates with excellent growth promoting properties. The results confirm promising applications of the endophytic bacterial isolates obtained in the study and also their possible growth promoting effect in P. nigrum.  相似文献   

13.
Nitrate acts as a vital signal molecule in the modulation of plant growth and development. The phytohormones gibberellin (GA) is also involved in this process. However, the exact molecular mechanism of how nitrate and GA signaling pathway work together in regulating plant growth remains poorly understood. In this study, we found that a nitrate-responsive BTB/TAZ protein MdBT2 participates in regulating nitrate-induced plant growth in apple (Malus × domestica). Yeast two-hybridization, protein pull-down, and bimolecular fluorescence complementation (BiFC) assays showed that MdBT2 interacts with a DELLA protein MdRGL3a, which is required for the ubiquitination and degradation of MdRGL3a proteins via a 26S proteasome-dependent pathway. Furthermore, heterologous expression of MdBT2 partially rescued growth inhibition caused by overexpression of MdRGL3a in Arabidopsis. Taken together, our findings indicate that MdBT2 promotes nitrate-induced plant growth partially through reducing the abundance of the DELLA protein MdRGL3a.

The BTB-TAZ protein interacts with and promotes ubiquitination and degradation of DELLA protein, thus regulating plant growth in response to nitrate.  相似文献   

14.
Beneficial plant-microbe interactions in the rhizosphere are primary determinants of plant health and soil fertility. Some antagonistic fungi have shown great effects toward the growth of plant crops. In this study, two major crops, cotton and potato, were selected to evaluate their growth promotion by the antagonistic fungus Talaromyces flavus. For each plant, five T. flavus isolates were selected from our fungal collection which had shown the highest antagonistic activities against the causal agent of wilt diseases on these plants. In the next step, for every crop, five isolates were used under greenhouse conditions. For evaluation of the plant growth promotion ability of T. flavus isolates, a split-plot trial was arranged in a randomized complete block design with four replications. The main factor was the method of application of T. flavus as a soil treatment, a seed treatment, and a combination of both methods. The subfactor was the use of different fungal isolates. Measured parameters were root length, crown length, plant height, plant fresh weight, and plant dry weight. Results showed that the maximum increase in the above parameters was mediated by the seed treatment method. The most effective isolate for cotton plants was TF-Co-M-23, which increased root length, plant height, plant fresh weight, and plant dry weight by 1.80-, 2.26-, 1.23-, and 1.19-fold, respectively. There were no significant differences among the various treatments affected by T. flavus in terms of crown length. The most effective isolate for potato plants was TF-Po-V-50, which increased root length, crown length, plant height, and plant dry weight by 1.71-, 1.09-, 1.45-, and 3.75-fold, respectively. The overall results of this study suggest that it may be possible to promote cotton and potato growth characteristics by using the antagonistic fungus T. flavus.  相似文献   

15.
Growth and glucuronidase (GUS) activity were followed in the cotyledons and rosette leaves of Arabidopsis thaliana (L.) Heynh (ecotype Wassilewskija) plants transformed with the GUS gene under the control of the cytokinin-dependent promoter of the ARR5 gene. The presence of active cytokinins in plant tissues was assessed from GUS activity. Plants were grown for three weeks on the nitrate-or ammonium-containing nutrient medium. In plants grown on ammonium nutrition, cotyledon and leaf growth was substantially suppressed as compared with plants feeding with nitrates. In correspondence with this growth inhibition, GUS activity was markedly lower in plant leaves grown on the ammonium-containing medium. This indicated a reduction in these leaves of active cytokinin forms capable of activation of the promoter for the ARR5 gene. On both nitrogen sources, GUS activity increased during leaf growth and dropped sharply after growth ceasing. This indicated that leaf growth depended on the cytokinin content in them. High GUS activity was detected in petioles and leaf conductive system, indicating leaf providing with cytokinins along the conductive vessels. A sharp drop in the GUS activity after leaf growth stoppage coincided in time with GUS activation in the leaf positioned above this leaf. This indicated possible cytokinin redistribution in the plant; its content could be a limiting factor for leaf growth. A higher growth rate in plants on nitrate nitrogen nutrition and corresponding high GUS activity in them are discussed in terms of cytokinin signaling role in leaf growth regulation mediated by nitrate.  相似文献   

16.
This simulation study is based on a lysimeter experiment with juvenile beech trees (Fagus sylvatica L.) which were grown under ambient or doubled ambient atmospheric ozone concentrations. The aim of the study was to analyze the role of differences in soil properties, differences in initial biomass and ozone impacts on observed plant growth variability at the eight lysimeters of this experiment. For this purpose, we established a new simulation model based on the model system Expert-N by coupling soil water and nitrogen transport models with the plant growth model PLATHO, which was already tested and applied for juvenile beech. In order to parameterize the soil model, for all lysimeters soil hydraulic parameters as well as carbon and nitrogen stocks were measured. Simulation results reveal that the observed decreased growth rates under elevated ozone are due to ozone impacts on plant growth, whereas the high plant growth variability between lysimeters is to a major part the consequence of differences in soil hydraulic properties. Differences in initial biomass are of minor importance to explain plant growth variability in this experiment.  相似文献   

17.
Priming plants by non-pathogenic bacteria allows the host to save energy and to reduce time needed for development of defense reaction during a pathogen attack. However, information on the role of endophytes in plant defense is limited. Here, the ability of endophytic bacteria to promote growth and resistance of potato plants towards infection by the necrotroph Pectobacterium atrosepticum was studied. A Pseudomonas sp. strain was selected due to antagonism towards bacterial pathogens and a Methylobacterium sp. strain because of efficient plant colonization. The aim of this study was to find if there is any correlation between plant growth promotion and induction of resistance by endophytes of potato, as well as to study the putative mechanisms of endophytes interacting with the plant during resistance induction. Both tested strains promoted growth of potato shoots but only the Pseudomonas sp. increased potato resistance towards the soft rot disease. Induction of disease resistance by the Methylobacterium sp. was inversely proportional to the size of bacterial population used for inoculation. The plant antioxidant system was moderately activated during the induction of resistance by the biocontrol strains. qPCR data on expression of marker genes of induced systemic resistance and acquired systemic resistance in endophyte-infected Arabidopsis plants showed activation of both salicylic acid and jasmonate/ethylene-dependent pathways after challenge inoculation with the pathogen. We suggest that some endophytes have the potential to activate both basal and inducible plant defense systems, whereas the growth promotion by biocontrol strains may not correlate with induction of disease resistance.  相似文献   

18.
The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.  相似文献   

19.
Arbuscular mycorrhizal (AM) symbiosis is among the factors contributing to plant survival in serpentine soils characterised by unfavourable physicochemical properties. However, AM fungi show a considerable functional diversity, which is further modified by host plant identity and edaphic conditions. To determine the variability among serpentine AM fungal isolates in their effects on plant growth and nutrition, a greenhouse experiment was conducted involving two serpentine and two non-serpentine populations of Knautia arvensis plants grown in their native substrates. The plants were inoculated with one of the four serpentine AM fungal isolates or with a complex AM fungal community native to the respective plant population. At harvest after 6-month cultivation, intraradical fungal development was assessed, AM fungal taxa established from native fungal communities were determined and plant growth and element uptake evaluated. AM symbiosis significantly improved the performance of all the K. arvensis populations. The extent of mycorrhizal growth promotion was mainly governed by nutritional status of the substrate, while the effect of AM fungal identity was negligible. Inoculation with the native AM fungal communities was not more efficient than inoculation with single AM fungal isolates in any plant population. Contrary to the growth effects, a certain variation among AM fungal isolates was revealed in terms of their effects on plant nutrient uptake, especially P, Mg and Ca, with none of the AM fungi being generally superior in this respect. Regardless of AM symbiosis, K. arvensis populations significantly differed in their relative nutrient accumulation ratios, clearly showing the plant’s ability to adapt to nutrient deficiency/excess.  相似文献   

20.
The effect of an arbuscular mycorrhizal fungus “AMF” (Glomus constrictum Trappe) on growth, pigments, and phosphorous content of marigold (Tagetes erecta) plant grown under different levels of drought stress was investigated. The applied drought stress levels reduced growth vigor (i.e. plant height, shoot dry weight, flower diameter as well as its fresh and dry weights) of mycorrhizal and non-mycorrhizal plant as compared to control plant (non-drought stressed plant). The presence of mycorrhizal fungus, however, stimulated all growth parameters of the treated plant comparing to non-mycorrhizal treated plant. The photosynthetic pigments (carotene in flowers and chlorophylls a and b in leaves) were also stimulated by the mycorrhizal fungi of well-watered as well as of water-stressed plants. The total pigments of mycorrhizal plants grown under well-watered conditions were higher than those of non-mycorrhizal ones by 60%. In most cases, drought-stressed mycorrhizal plants were significantly better than those of the non-mycorrhizal plants. So, the overall results suggest that mycorrhizal fungal colonization affects host plant positively on growth, pigments, and phosphorous content, flower quality and thereby alleviates the stress imposed by water with holding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号