首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High densities of ion channels at axon initial segments (AISs) and nodes of Ranvier are required for initiation, propagation, and modulation of action potentials in axons. The organization of these membrane domains depends on a specialized cytoskeleton consisting of two submembranous cytoskeletal and scaffolding proteins, ankyrinG (ankG) and betaIV spectrin. However, it is not known which of these proteins is the principal organizer, or if the mechanisms governing formation of the cytoskeleton at the AIS also apply to nodes. We identify a distinct protein domain in betaIV spectrin required for its localization to the AIS, and show that this domain mediates betaIV spectrin's interaction with ankG. Dominant-negative ankG disrupts betaIV spectrin localization, but does not alter endogenous ankG or Na(+) channel clustering at the AIS. Finally, using adenovirus for transgene delivery into myelinated neurons, we demonstrate that betaIV spectrin recruitment to nodes of Ranvier also depends on binding to ankG.  相似文献   

2.
The axon initial segment is an excitable membrane highly enriched in voltage-gated sodium channels that integrates neuronal inputs and initiates action potentials. This study identifies Nav1.6 as the voltage-gated sodium channel isoform at mature Purkinje neuron initial segments and reports an essential role for ankyrin-G in coordinating the physiological assembly of Nav1.6, betaIV spectrin, and the L1 cell adhesion molecules (L1 CAMs) neurofascin and NrCAM at initial segments of cerebellar Purkinje neurons. Ankyrin-G and betaIV spectrin appear at axon initial segments by postnatal day 2, whereas L1 CAMs and Nav1.6 are not fully assembled at continuous high density along axon initial segments until postnatal day 9. L1 CAMs and Nav1.6 therefore do not initiate protein assembly at initial segments. betaIV spectrin, Nav1.6, and L1 CAMs are not clustered in adult Purkinje neuron initial segments of mice lacking cerebellar ankyrin-G. These results support the conclusion that ankyrin-G coordinates the physiological assembly of a protein complex containing transmembrane adhesion molecules, voltage-gated sodium channels, and the spectrin membrane skeleton at axon initial segments.  相似文献   

3.
Axon initial segments (AISs) and nodes of Ranvier are sites of action potential generation and propagation, respectively. Both domains are enriched in sodium channels complexed with adhesion molecules (neurofascin [NF] 186 and NrCAM) and cytoskeletal proteins (ankyrin G and betaIV spectrin). We show that the AIS and peripheral nervous system (PNS) nodes both require ankyrin G but assemble by distinct mechanisms. The AIS is intrinsically specified; it forms independent of NF186, which is targeted to this site via intracellular interactions that require ankyrin G. In contrast, NF186 is targeted to the node, and independently cleared from the internode, by interactions of its ectodomain with myelinating Schwann cells. NF186 is critical for and initiates PNS node assembly by recruiting ankyrin G, which is required for the localization of sodium channels and the entire nodal complex. Thus, initial segments assemble from the inside out driven by the intrinsic accumulation of ankyrin G, whereas PNS nodes assemble from the outside in, specified by Schwann cells, which direct the NF186-dependent recruitment of ankyrin G.  相似文献   

4.
Voltage-gated sodium channels localize at high density in axon initial segments and nodes of Ranvier in myelinated axons. Sodium channels consist of a pore-forming alpha subunit and at least one beta subunit. beta1 is a member of the immunoglobulin superfamily of cell adhesion molecules and interacts homophilically and heterophilically with contactin and Nf186. In this study, we characterized beta1 interactions with contactin and Nf186 in greater detail and investigated interactions of beta1 with NrCAM, Nf155, and sodium channel beta2 and beta3 subunits. Using Fc fusion proteins and immunocytochemical techniques, we show that beta1 interacts with the fibronectin-like domains of contactin. beta1 also interacts with NrCAM, Nf155, sodium channel beta2, and Nf186 but not with sodium channel beta3. The interaction of the extracellular domains of beta1 and beta2 requires the region 169TEEEGKTDGEGNA181 located in the intracellular domain of beta2. Interaction of beta1 with Nf186 results in increased Nav).2 cell surface density over alpha alone, similar to that shown previously for contactin and beta2. We propose that beta1 is the critical communication link between sodium channels, nodal cell adhesion molecules, and ankyrinG.  相似文献   

5.
The interaction between gliomedin and the axonodal cell adhesion molecules (CAMs) neurofascin and NrCAM induces the clustering of Na(+) channels at the nodes of Ranvier. We define new interactions of gliomedin that are essential for its clustering activity. We show that gliomedin exists as both transmembrane and secreted forms that are generated by proteolytic cleavage of the protein, and that only the latter is detected at the nodes of Ranvier. The secreted extracellular domain of gliomedin binds to Schwann cells and is incorporated into the extracellular matrix (ECM) in a heparin-dependent manner, suggesting the involvement of heparan sulfate proteoglycans (HSPGs). Furthermore, we show that the N-terminal region of gliomedin serves as an oligomerization domain that mediates self-association of the molecule, which is required for its binding to neurofascin and NrCAM. Our results indicate that the deposition of gliomedin multimers at the nodal gap by binding to HSPGs facilitates the clustering of the axonodal CAMs and Na(+) channels.  相似文献   

6.
Action potential conduction velocity increases dramatically during early development as axons become myelinated. Integral to this process is the clustering of voltage-gated Na(+) (Nav) channels at regularly spaced gaps in the myelin sheath called nodes of Ranvier. We show here that some aspects of peripheral node of Ranvier formation are distinct from node formation in the CNS. For example, at CNS nodes, Nav1.2 channels are detected first, but are then replaced by Nav1.6. Similarly, during remyelination in the CNS, Nav1.2 channels are detected at newly forming nodes. By contrast, the earliest Nav-channel clusters detected during developmental myelination in the PNS have Nav1.6. Further, during PNS remyelination, Nav1.6 is detected at new nodes. Finally, we show that accumulation of the cell adhesion molecule neurofascin always precedes Nav channel clustering in the PNS. In most cases axonal neurofascin (NF-186) accumulates first, but occasionally paranodal neurofascin is detected first. We suggest there is heterogeneity in the events leading to Nav channel clustering, indicating that multiple mechanisms might contribute to node of Ranvier formation in the PNS.  相似文献   

7.
The cell adhesion molecules (CAMs) of the immunoglobulin superfamily (Ig-CAMs) play a crucial role in the organization of the node of Ranvier in myelinated axons. In the peripheral nervous system, Gliomedin (Gldn) secreted by Schwann cell microvilli binds NgCAM-related CAM (NrCAM) and Neurofascin-186 (NF186) and direct the nodal clustering of voltage-gated sodium channels (Nav). NF186 is the single axonal Gldn partner to ensure Nav clustering at nodes, whereas NrCAM is only required in glial cells (Feinberg, K., Eshed-Eisenbach, Y., Frechter, S., Amor, V., Salomon, D., Sabanay, H., Dupree, J. L., Grumet, M., Brophy, P. J., Shrager, P., and Peles, E. (2010) Neuron 65, 490-502). The olfactomedin domain of Gldn is implicated in the interaction with nodal Ig-CAMs. However, the interacting modules of NrCAM or NF186 involved in Gldn association are unknown. Here, we report that fibronectin type III-like (FnIII) domains of both Ig-CAMs mediate their interaction with Gldn in pulldown and cell binding assays. Using surface plasmon resonance assays, we determined that NrCAM and NF186 display similar affinity constant for their association with Gldn (K(D) of 0.9 and 5.7 nm, respectively). We characterized the FnIII domains 1 and 2 of NF186 as interacting modules that ensure association with Gldn. We found that the soluble FnIII domains of NF186 (FnIII-Fc) bind on Schwann cells and inhibit Gldn and Nav clustering at heminodes, the precursors of mature nodes in myelinating cultures. Our study reveals the unexpected importance of FnIII domains of Ig-CAMs in the organization of nodes of Ranvier in peripheral axons. Thus, NF186 utilizes distinct modules to organize the multimeric nodal complex.  相似文献   

8.
In mammalian neurons, the generation and propagation of the action potential result from the presence of dense clusters of voltage-gated sodium channels (Nav) at the axonal initial segment (AIS) and nodes of Ranvier. In these two structures, the assembly of specific supra-molecular complexes composed of numerous partners, such as cytoskeletal scaffold proteins and signaling proteins ensures the high concentration of Nav channels. Understanding how neurons regulate the expression and discrete localization of Nav channels is critical to understanding the diversity of normal neuronal function as well as neuronal dysfunction caused by defects in these processes. Here, we review the mechanisms establishing the clustering of Nav channels at the AIS and in the node and discuss how the alterations of Nav channel clustering can lead to certain pathophysiologies.  相似文献   

9.
The axon initial segment (AIS) has characteristically dense clustering of voltage-gated sodium channels (Nav), cell adhesion molecule Neurofascin 186 (Nfasc), and neuronal scaffold protein Ankyrin-G (AnkG) in neurons, which facilitates generation of an action potential and maintenance of axonal polarity. However, the mechanisms underlying AIS assembly, maintenance, and plasticity remain poorly understood. Here, we report the high-resolution crystal structure of the AnkG ankyrin repeat (ANK repeat) domain in complex with its binding site in the Nfasc cytoplasmic tail that shows, in conjunction with binding affinity assays with serial truncation variants, the molecular basis of AnkG–Nfasc binding. We confirm AnkG interacts with the FIGQY motif in Nfasc, and we identify another region required for their high affinity binding. Our structural analysis revealed that ANK repeats form 4 hydrophobic or hydrophilic layers in the AnkG inner groove that coordinate interactions with essential Nfasc residues, including F1202, E1204, and Y1212. Moreover, we show disruption of the AnkG–Nfasc complex abolishes Nfasc enrichment at the AIS in cultured mouse hippocampal neurons. Finally, our structural and biochemical analysis indicated that L1 syndrome-associated mutations in L1CAM, a member of the L1 immunoglobulin family proteins including Nfasc, L1CAM, NrCAM, and CHL1, compromise binding with ankyrins. Taken together, these results define the mechanisms underlying AnkG–Nfasc complex formation and show that AnkG-dependent clustering of Nfasc is required for AIS integrity.  相似文献   

10.
11.
Saltatory electric conduction requires clustered voltage-gated sodium channels (VGSCs) at axon initial segments (AIS) and nodes of Ranvier (NR). A dense membrane undercoat is present at these sites, which is thought to be key for the focal accumulation of channels. Here, we prove that betaIVSigma1 spectrin, the only betaIV spectrin with an actin-binding domain, is an essential component of this coat. Specifically, betaIVSigma1 coexists with betaIVSigma6 at both AIS and NR, being the predominant spectrin at AIS. Removal of betaIVSigma1 alone causes the disappearance of the nodal coat, an increased diameter of the NR, and the presence of dilations filled with organelles. Moreover, in myelinated cochlear afferent fibers, VGSC and ankyrin G clusters appear fragmented. These ultrastructural changes can explain the motor and auditory neuropathies present in betaIVSigma1 -/- mice and point to the betaIVSigma1 spectrin isoform as a master-stabilizing factor of AIS/NR membranes.  相似文献   

12.
Injury to neural tissue renders voltage-gated Na(+) (Nav) channels leaky. Even mild axonal trauma initiates Na(+) -loading, leading to secondary Ca(2+)-loading and white matter degeneration. The nodal isoform is Nav1.6 and for Nav1.6-expressing HEK-cells, traumatic whole cell stretch causes an immediate tetrodotoxin-sensitive Na(+)-leak. In stretch-damaged oocyte patches, Nav1.6 current undergoes damage-intensity dependent hyperpolarizing- (left-) shifts, but whether left-shift underlies injured-axon Nav-leak is uncertain. Nav1.6 inactivation (availability) is kinetically limited by (coupled to) Nav activation, yielding coupled left-shift (CLS) of the two processes: CLS should move the steady-state Nav1.6 "window conductance" closer to typical firing thresholds. Here we simulated excitability and ion homeostasis in free-running nodes of Ranvier to assess if hallmark injured-axon behaviors-Na(+)-loading, ectopic excitation, propagation block-would occur with Nav-CLS. Intact/traumatized axolemma ratios were varied, and for some simulations Na/K pumps were included, with varied in/outside volumes. We simulated saltatory propagation with one mid-axon node variously traumatized. While dissipating the [Na(+)] gradient and hyperactivating the Na/K pump, Nav-CLS generated neuropathic pain-like ectopic bursts. Depending on CLS magnitude, fraction of Nav channels affected, and pump intensity, tonic or burst firing or nodal inexcitability occurred, with [Na(+)] and [K(+)] fluctuating. Severe CLS-induced inexcitability did not preclude Na(+)-loading; in fact, the steady-state Na(+)-leaks elicited large pump currents. At a mid-axon node, mild CLS perturbed normal anterograde propagation, and severe CLS blocked saltatory propagation. These results suggest that in damaged excitable cells, Nav-CLS could initiate cellular deterioration with attendant hyper- or hypo-excitability. Healthy-cell versions of Nav-CLS, however, could contribute to physiological rhythmic firing.  相似文献   

13.
Accumulation of Na(+) channels at the nodes of Ranvier is a prerequisite for saltatory conduction. In peripheral nerves, clustering of these channels along the axolemma is regulated by myelinating Schwann cells through a yet unknown mechanism. We report the identification of gliomedin, a glial ligand for neurofascin and NrCAM, two axonal immunoglobulin cell adhesion molecules that are associated with Na+ channels at the nodes of Ranvier. Gliomedin is expressed by myelinating Schwann cells and accumulates at the edges of each myelin segment during development, where it aligns with the forming nodes. Eliminating the expression of gliomedin by RNAi, or the addition of a soluble extracellular domain of neurofascin to myelinating cultures, which caused the redistribution of gliomedin along the internodes, abolished node formation. Furthermore, a soluble gliomedin induced nodal-like clusters of Na+ channels in the absence of Schwann cells. We propose that gliomedin provides a glial cue for the formation of peripheral nodes of Ranvier.  相似文献   

14.
Voltage-gated sodium channels are composed of a pore-forming alpha subunit and at least one auxiliary beta subunit. Both beta1 and beta2 are cell adhesion molecules that interact homophilically, resulting in ankyrin recruitment. In contrast, beta1, but not beta2, interacts heterophilically with contactin, resulting in increased levels of cell surface sodium channels. We took advantage of these results to investigate the molecular basis of beta1-mediated enhancement of sodium channel cell surface density, including elucidating structure-function relationships for beta1 association with contactin, ankyrin, and Nav1.2. beta1/beta2 subunit chimeras were used to assign putative sites of contactin interaction to two regions of the beta1 Ig loop. Recent studies have shown that glutathione S-transferase fusion proteins containing portions of Nav1.2 intracellular domains interact directly with ankyrinG. We show that native Nav1.2 associates with ankyrinG in cells in the absence of beta subunits and that this interaction is enhanced in the presence of beta1 but not beta1Y181E, a mutant that does not interact with ankyrinG. beta1Y181E does not modulate Nav1.2 channel function despite efficient association with Nav1.2 and contactin. beta1Y181E increases Nav1.2 cell surface expression, but not as efficiently as wild type beta1. beta1/beta2 chimeras exchanging various regions of the beta1 Ig loop were all ineffective in increasing Nav1.2 cell surface density. Our results demonstrate that full-length beta1 is required for channel modulation and enhancement of sodium channel cell surface expression.  相似文献   

15.
Galiano MR  Jha S  Ho TS  Zhang C  Ogawa Y  Chang KJ  Stankewich MC  Mohler PJ  Rasband MN 《Cell》2012,149(5):1125-1139
AnkyrinG (ankG) is highly enriched in neurons at axon initial segments (AISs) where it clusters Na(+) and K(+) channels and maintains neuronal polarity. How ankG becomes concentrated at the AIS is unknown. Here, we show that as neurons break symmetry, they assemble a distal axonal submembranous cytoskeleton, comprised of ankyrinB (ankB), αII-spectrin, and βII-spectrin, that defines a boundary limiting ankG to the proximal axon. Experimentally moving this boundary altered the length of ankG staining in the proximal axon, whereas disruption of the boundary through silencing of ankB, αII-spectrin, or βII-spectrin expression blocked AIS assembly and permitted ankG to redistribute throughout the distal axon. In support of an essential role for the distal cytoskeleton in ankG clustering, we also found that αII and βII-spectrin-deficient mice had disrupted AIS. Thus, the distal axonal cytoskeleton functions as an intra-axonal boundary restricting ankG to the AIS.  相似文献   

16.
Modifications of human cardiac sodium channel gating by UVA light   总被引:5,自引:0,他引:5  
Voltage-gated Na(+) channels are membrane proteins responsible for the generation of action potentials. In this report we demonstrate that UVA light elicits gating changes of human cardiac Na+ channels. First, UVA irradiation hampers the fast inactivation of cardiac Nav1.5 Na(+) channels expressed in HEK293t cells. A maintained current becomes conspicuous during depolarization and reaches its maximal quasi steady-state level within 5-7 min. Second, the activation time course is slowed by UVA light; modification of the activation gating by UVA irradiation continues for 20 min without reaching steady state. Third, along with the slowed activation time course, the peak current is reduced progressively. Most Na(+) currents are eliminated during 20 min of UVA irradiation. Fourth, UVA light increases the holding current nonlinearly; this phenomenon is slow at first but abruptly fast after 20 min. Other skeletal muscle Nav1.4 isoforms and native neuronal Na(+) channels in rat GH(3) cells are likewise sensitive to UVA irradiation. Interestingly, a reactive oxygen metabolite (hydrogen peroxide at 1.5%) and an oxidant (chloramine-T at 0.5 mM) affect Na(+) channel gating similarly, but not identically, to UVA. These results together suggest that UVA modification of Na(+) channel gating is likely mediated via multiple reactive oxygen metabolites. The potential link between oxidative stress and the impaired Na(+) channel gating may provide valuable clues for ischemia/reperfusion injury in heart and in CNS.  相似文献   

17.
Action potential initiation, modulation, and duration in neurons depend on a variety of Na+ and K+ channels that are highly enriched at the axon initial segment (AIS). The AIS also has high densities of cell adhesion molecules (CAMs), modulatory proteins, and a unique extracellular matrix (ECM). In contrast to other functional domains of axons (e.g. the nodes of Ranvier and axon terminals) whose development depends on the interactions with different cells (e.g. myelinating glia and postsynaptic cells), the recruitment and retention of AIS proteins is intrinsically specified through axonal cytoskeletal and scaffolding proteins. We speculate that the AIS has previously unappreciated forms of plasticity that influence neuronal excitability, and that AIS plasticity is regulated by the developmental or activity-dependent modulation of scaffolding protein levels rather than directly altering ion channel expression.  相似文献   

18.
Bender KJ  Ford CP  Trussell LO 《Neuron》2010,68(3):500-511
Action potentials initiate in the axon initial segment (AIS), a specialized compartment enriched with Na(+) and K(+) channels. Recently, we found that T- and R-type Ca(2+) channels are concentrated in the AIS, where they contribute to local subthreshold membrane depolarization and thereby influence action potential initiation. While periods of high-frequency activity can alter availability of AIS voltage-gated channels, mechanisms for long-term modulation of AIS channel function remain unknown. Here, we examined the regulatory pathways that control AIS Ca(2+) channel activity in brainstem interneurons. T-type Ca(2+) channels were downregulated by dopamine receptor activation acting via protein kinase C, which in turn reduced neuronal output. These effects occurred without altering AIS Na(+) or somatodendritic T-type channel activity and could be mediated by endogenous dopamine sources present in the auditory brainstem. This pathway represents a new mechanism to inhibit neurons by specifically regulating Ca(2+) channels directly involved in action potential initiation.  相似文献   

19.
In mammalian neurons, the precise accumulation of sodium channels at the axonal initial segment (AIS) ensures action potential initiation. This accumulation precedes the immobilization of membrane proteins and lipids by a diffusion barrier at the AIS. Using single-particle tracking, we measured the mobility of a chimeric ion channel bearing the ankyrin-binding motif of the Nav1.2 sodium channel. We found that ankyrin G (ankG) limits membrane diffusion of ion channels when coexpressed in neuroblastoma cells. Site-directed mutants with decreased affinity for ankG exhibit increased diffusion speeds. In immature hippocampal neurons, we demonstrated that ion channel immobilization by ankG is regulated by protein kinase CK2 and occurs as soon as ankG accumulates at the AIS of elongating axons. Once the diffusion barrier is formed, ankG is still required to stabilize ion channels. In conclusion, our findings indicate that specific binding to ankG constitutes the initial step for Nav channel immobilization at the AIS membrane and precedes the establishment of the diffusion barrier.  相似文献   

20.
Neurofascin (NF) is a cell surface protein belonging to the immunoglobulin superfamily (IgSF). Different polypeptides of 186, 180, 166 and 155 kDa are generated by alternative splicing. Expression of these isoforms is temporally and spatially regulated and can be roughly grouped into embryonic, adult and glial expression. NF interacts with many different interaction partners both extra- and intracellularly. Interactions of NF166 and NF180 selectively regulate mechanisms of plasticity like neurite outgrowth and the formation postsynaptic components. By contrast, NF155 and NF186 confer stabilization of neural structures by interaction with voltage-gated sodium channels and ankyrinG at axon initial segments (AIS) or nodes of Ranvier as well as neuron-glia interactions at the paranodes. Alternatively spliced isoforms of neurofascin may therefore balance dynamic and stabilizing mechanisms of the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号