首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The origin of modern humans can be traced by comparing polymorphic sites in either mitochondria or genomic sequences between humans and other primates. The human Y chromosome has both a non-recombining region and X-Y homologous pseudo-autosomal regions. In the nonrecombining region events during evolution can be directly detected. At least a part of homology between Xq21 and Yp11 is a result of rather recent translocations from the X chromosome to the Y chromosome. DNA markers residing in the nonrecombining region of the human Y chromosome are potentially useful in tracing male-specific gene flow in human evolution. However, the number of available markers in the region is limited. Here, we report a novel X-Y homologous (CA)n repeat locus in the nonrecombining region of the Y chromosome. This marker, DXYS241, has several interesting features. Y- and X-chromosome alleles are distinguishable because the Y-chromosome alleles are shorter than the X-chromosome alleles most of the time. We developed 2 primer sets for specific examination of Y- and X-chromosome alleles. The marker should be useful in establishing relationships between populations based on patrilineal gene flow. Sequences homologous to DXYS241 are also found on the X chromosome of primates. Four events during primate evolution that led to the modern human Y chromosome were identified.  相似文献   

2.
It has been proposed that sequence homology should exist between the short arms of the human sex chromosomes, in the regions pairing at meiosis. Out of 40 clones picked at random from a collection of non-repetitive DNA sequences derived from the human Y chromosome, we have found nine sequences which show very high homology with sequences located on the X chromosome. All nine probes originate from the euchromatic part of the Y chromosome. All the homologous sequences are located within the Xq12-Xq22-24 region. None of them map to the short arm of the X chromosome. We conclude that an important part of the euchromatic region of the Y chromosome is homologous to the middle of the X chromosome long arm, possibly as a result of recent translation event(s).  相似文献   

3.
人类性染色体特异DNA对三种鱼类染色体的描绘   总被引:5,自引:0,他引:5  
染色体描绘是研究基因组进化的强有力手段之一,用人X和Y染色体文库特异DNA为探针,对3种硬骨鱼类-刺鳅、黄鳝和斑马鱼的有丝分裂中期裂染色体进行了描绘研究,结果表明,在这3种鱼类的染色体组中都发现有人X染色体特DN的同源片段,它们散布在几对同源染色体中,但用人Y染色体DN描绘这3种鱼类染色体时,则没有检测出可见的同源片段。同时对从低等脊椎动物到人类的X染色体进化过程进行了进一步探讨。  相似文献   

4.
The mammalian X and Y chromosomes are very different in size and gene content. The Y chromosome is much smaller than the X and consists largely of highly repeated non-coding DNA, containing few active genes. The 65-Mb human Y is homologous to the X over two small pseudoautosomal regions which together contain 13 active genes. The heterochromatic distal half of the human Yq is entirely composed of highly repeated non-coding DNA, and even the euchromatic portion of the differential region is largely composed of non-coding repeated sequences, amongst which about 30 active genes are located. The basic marsupial Y chromosome (about 10 Mb) is much smaller than that of humans or other eutherian mammals. It appears to include no PAR, since it does not undergo homologous pairing, synaptonemal complex formation or recombination with the X. We show here that the tiny dunnart Y chromosome does not share cytogenetically detectable sequences with any other chromosome, suggesting that it contains many fewer repetitive DNA sequences than the human or mouse Y chromosomes. However, it shares several genes with the human and/or mouse Y chromosome, including the sex determining gene SRY and the candidate spermatogenesis gene RBMY, implying that the marsupial and eutherian Y are monophyletic. This minimal mammalian Y chromosome might provide a good model Y in which to hunt for new mammalian Y specific genes.  相似文献   

5.
We have isolated and characterized DNA probes that detect homologies between the X and Y chromosomes. Clone St25 is derived from the q13-q22 region of the X chromosome and recognizes a 98% homologous sequence on the Y chromosome. Y specific fragments were present in DNAs from 5 Yq-individuals and from 4 out of 7 XX males analysed. An X linked TaqI RFLP is detected with the St25 probe (33% heterozygosity) which should allow one to establish a linkage map including other polymorphic X-Y homologous sequences in this region and to compare it to a Y chromosome deletion map. Probe DXS31 located in Xp223-pter detects a 80% homologous sequence in the Y chromosome. The latter can be assigned to Yq11-qter outside the region which contains the Y specific satellite sequences. ACT1 and ACT2, the actin sequences present on the X and Y chromosomes respectively, have been cloned. No homology was detected between the X and Y derived fragments outside from the actin sequence. ACT2 and the Y specific sequence corresponding to DXS31 segregate together in a panel of Y chromosomes aberrations, and might be useful markers for the region important for spermatogenesis in Yq. Various primate species were analysed for the presence of sequences homologous to the three probes. Sequences detected by St25 and DXS31 are found only on the X chromosome in cercopithecoidae. The sequences which flank ACT2 detect in the same species autosomal fragments but no male specific fragments. It is suggested that the Y chromosome acquired genetic material from the X chromosome and from autosomes at various times during primate evolution.  相似文献   

6.
The human sex chromosomes differ in sequence, except for the pseudoautosomal regions (PAR) at the terminus of the short and the long arms, denoted as PAR1 and PAR2. The boundary between PAR1 and the unique X and Y sequences was established during the divergence of the great apes. During a copy number variation screen, we noted a paternally inherited chromosome X duplication in 15 independent families. Subsequent genomic analysis demonstrated that an insertional translocation of X chromosomal sequence into theMa Y chromosome generates an extended PAR. The insertion is generated by non-allelic homologous recombination between a 548 bp LTR6B repeat within the Y chromosome PAR1 and a second LTR6B repeat located 105 kb from the PAR boundary on the X chromosome. The identification of the reciprocal deletion on the X chromosome in one family and the occurrence of the variant in different chromosome Y haplogroups demonstrate this is a recurrent genomic rearrangement in the human population. This finding represents a novel mechanism shaping sex chromosomal evolution.  相似文献   

7.
Summary In situ hybridization experiments were carried out with two clones, YACG 35 and 2.8, which had been selected from two genomic libraries strongly enriched for the human Y chromosome. Besides the human Y chromosome, both sequences strongly hybridized to the human X chromosome, with few minor binding sites on autosomes. In particular, on the X chromosome DNA from clone YACG 35 hybridized to the centromeric region and the distal part of the short arm (Xp2.2). On the Y chromosome, the sequence was assigned to one site situated in the border region between Yq1.1 and Yq1.2. DNA from clone 2.8 also hybridized to the centromeric region of the X and the distal part of the short arm (Xq2.2). On the Y, however, two binding sites were observed (Yp1.1 and Yq1.2). The findings indicate that sex chromosomal sequences may be localized in homologous regions (as suggested from meiotic pairing) but also at ectopic sites.  相似文献   

8.
Fluorescence in situ hybridization (FISH) was used to construct a homology map to analyse the extent of evolutionary conservation of chromosome segments between human and rabbit (Oryctolagus cuniculus, 2n = 44). Chromosome-specific probes were established by bivariate fluorescence activated flow sorting followed by degenerate oligonucleotide-primed PCR (DOP-PCR). Painting of rabbit probes to human chromosomes and vice versa allowed a detailed analysis of the homology between these species. All rabbit chromosome paints, except for the Y paint, hybridized to human chromosomes. All human chromosome paints, except for the Y paint, hybridized to rabbit chromosomes. The results obtained revealed extensive genome conservation between the two species. Rabbit chromosomes 12, 19 and X were found to be completely homologous to human chromosomes 6, 17 and X, respectively. All other human chromosomes were homologous to two or sometimes three rabbit chromosomes. Many conserved chromosome segments found previously in other mammals (e.g. cat, pig, cattle, Indian muntjac) were also found to be conserved in rabbit chromosomes.  相似文献   

9.
A deletion map of Yq11 has been constructed by analyzing 23 individuals bearing structural abnormalities (isochromosomes, terminal deletions and X;Y, Y;X, or A;Y translocations) in the long arm of the Y chromosome. Twenty-two Yq-specific loci were detected using 14 DNA probes, ordered in 11 deletion intervals, and correlated with the cytogenetic map of the chromosome. The breakpoints of seven translocations involving Xp22 and Yq11 were mapped. The results obtained from at least five translocations suggest that these abnormal chromosomes may result from aberrant interchanges between X-Y homologous regions. The use of probes detecting Yq11 and Xp22.3 homologous sequences allowed us to compare the order of loci within these two chromosomal regions. The data suggest that at least three physically and temporary distinct rearrangements (pericentric inversion of pseudoautosomal sequences and/or X-Y transpositions and duplications) have occurred during evolution and account for the present organization of this region of the human Y chromosome. The correlation between the patient' phenotypes and the extent of their Yq11 deletions permits the tentative assignment of a locus involved in human spermatogenesis to a specific interval within Yq11.23.  相似文献   

10.
The androgen receptor gene (AR), which is located on the long arm of the human X chromosome, was mapped by somatic cell analysis and in situ hybridization in marsupial and monotreme species. Both methods demonstrated that it was located on the X chromosome in each marsupial species, and also in the platypus. We conclude that this gene is part of a highly conserved region of the mammalian X, represented by the human Xq, which formed part of the X chromosome in a mammalian ancestor 150 million years ago. Since this gene is located proximally on the long arm of the monotreme X, which is G-band homologous to the Y and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on its isolation by X-Y differentiation or on X inactivation.  相似文献   

11.
12.
To better understand the evolutionary dynamics of repetitive sequences in human sex chromosomes, we have analyzed seven new X/Y homologous microsatellites located within PCDHX/Y, one of the two recently described gene pairs in the Xq21.3/Yp11.2 hominid-specific homology block, in samples from Portugal and Mozambique. Sharp differences were observed on X/Y allele distributions, concerning both the presence of private alleles and a different modal repeat length for X-linked and Y-linked markers, and this difference was statistically significant. Higher diversity was found in X-linked microsatellites than in their Y chromosome counterparts; when comparing populations, Mozambicans showed more allele diversity for the X chromosome, but the contrary was true for the Y chromosome microsatellites. Evolutionary patterns, relying on intragenic PCDHX/Y SNPs, also revealed distinct scenarios for X and Y chromosomes. Greater microsatellite diversity was displayed by African X chromosomes within the most common haplotypes shared by both populations, whereas higher microsatellite diversity was found in Portugal for the ancestral Y chromosome haplotype. The most frequent PCDHY haplotype in Portuguese was the derived one, and it was not found in Mozambicans. TMRCA estimated by the rho parameter resulted in 13,700 years (7,500-20,000 years), which is consistent with a recent, post-Out-of-Africa origin for this haplotype. In conclusion, the newly described microsatellite loci generally displayed greater X-linked to Y-linked diversity and this pattern was also detected with slower evolving markers, with a remarkable differentiation between populations observed for Y chromosome haplotypes and, thus, greater divergence among Y chromosomes in human populations.  相似文献   

13.
The mammalian X and Y chromosomes are thought to have evolved from a common, nearly homologous chromosome pair. Although there is little sequence similarity between the mouse or the human X and Y, there are several regions in which moderate to extensive sequence homologies have been found, including, but not limited to, the so-called pseudoautosomal segment, in which X-Y pairing and recombination take place. The steroid sulfatase gene is in the pseudoautosomal region of the mouse, but not in man. We have cloned and characterized the human STS X-encoded locus and a pseudogene that is present on the long arm of the Y chromosome. Our data in humans and other primates suggest that there has been a pericentric inversion of the Y chromosome during primate evolution that has disrupted the former pseudoautosomal arrangement of these genes. These results provide additional insight into the evolution of the sex chromosomes and into the nature of this interesting portion of the human genome.  相似文献   

14.
Marsupial sex chromosomes are smaller than their eutherian counterparts and are thought to reflect an ancestral mammalian X and Y. The gene content of this original X is represented largely by the long arm of the human X chromosome. Genes on the short arm of the human X are autosomal in marsupials and monotremes, and represent a recent addition to the eutherian X and Y. The marsupial X and Y apparently lack a pseudoautosomal region and show only end-to-end pairing at meiosis. However, the sex chromosomes of macropodid marsupials (kangaroos and wallabies) are larger than the sex chromosomes of other groups, and a nucleolus organizer is present on the X and occasionally the Y. Chromosome painting using DNA from sorted and microdissected wallaby X and Y chromosomes reveals homologous sequences on the tammar X and Y chromosomes, concentrated on the long arm of the Y chromosome and short arm of the X. Ribosomal DNA sequences were detected by fluorescence in situ hybridization on the wallaby Xp but not the Y. Since no chiasmata have been observed in marsupial sex chromosomes, it is unlikely that these shared sequences act as a pseudoautosomal region within which crossing over may occur, but they may be required for end-to-end associations. The shared region of wallaby X and Y chromosomes bears no homology with the recently added region of the eutherian sex chromosomes, so we conclude that independent additions occurred to both sex chromosomes in a eutherian and macropodid ancestor, as predicted by the addition-attrition hypothesis of sex chromosome evolution. Received: 18 October 1996 / Accepted: 21 February 1997  相似文献   

15.
An X linked human DNA fragment (named DXS31 ) which detects partially homologous sequences on the Y chromosome has been isolated. Regional localisation of the two sex linked sequences was determined using a panel of rodent-human somatic cell hybrids. The X specific sequence is located at the tip of the short arm ( Xp22 .3-pter), i.e. within or close to the region which pairs with the Y chromosome short arm at meiosis. However the Y specific sequence is located in the heterochromatic region of the long arm ( Yq11 -qter) and lies outside from the pairing region. DNAs from several XX male subjects were probed with DXS31 and in all cases a double dose of the X linked fragment was found, and the Y specific fragment was absent. DXS31 detects in chimpanzee a male-female differential pattern identical to that found in man. However results obtained in a more distantly related species, the brown lemur, suggest that the sequences detected by DXS31 in this species might be autosomally coded. The features observed with these X-Y related sequences do not fit with that expected from current hypotheses of homology between the pairing regions of the two sex chromosomes, nor with the pattern observed with other X-Y homologous sequences recently characterized. Our results suggest also that the rule of conservation of X linkage in mammals might not apply to sequences present on the tip of the X chromosome short arm, in bearing with the controversial issue of steroid sulfatase localisation in mouse.  相似文献   

16.
Protocadherin X (PCDHX) and Protocadherin Y (PCDHY) are cell-surface adhesion molecules expressed predominantly in brain. The human PCDH11X/Y gene pair is located in the non-pseudoautosomal X-Y homologous region (Xq21.3/Yp11.2). The possible existence of PCDH11 gene dosage differences between human and non-human primates is of evolutionary significance with respect to species differences and escape from X inactivation, and has been repeatedly debated. Previous investigations on the X/Y homologous status of PCDH11 and adjacent sequences in non-human primates have highlighted the complexity of the molecular pattern and evolutionary history of this genomic region. This paper provides for the first time direct evidence for the absence of the PCDH11 genefrom the Y chromosome of chimpanzee (Pan troglodytes) as well as gorilla (Gorilla gorilla). By confirmingthe suspected lack of X-Y homologous status for PCDH11 in non-human primates, our results reinforce the hypothesis of a hominid-specific role for this gene in brain development.  相似文献   

17.
Several recombinants were identified and purified from a cloned library of human DNA by virtue of their homology to DNA from a mouse-human hybrid cell line containing a single human chromosome, the X, and their lack of homology to mouse DNA. Three recombinants were characterized in detail, and all were homologous to reiterated DNA from the human X chromosome. These recombinants also were homologous to reiterated sequences on one or more human autosomes and, therefore, were not X chromosome specific. The recombinant DNA fragments homologous to human reiterated X DNA were the same fragments homologous to human reiterated autosomal DNA. Digestion of genomic DNAs with several restriction enzymes revealed that the pattern of fragments homologous to one recombinant, lambda Hb2, was the same on autosomes as on the X chromosome, suggesting that the molecular organization of these elements on the X is not distinct from their organization on autosomes.  相似文献   

18.
19.
点带石斑鱼(Epinephelus malabaricus)属于鲈形目, 科、石斑鱼亚科、石斑鱼属, 是中国东南沿海暖水性礁栖的名贵海产经济鱼类. 采用PHA活体注射结合秋水仙素培养, 取点带石斑鱼全肾, 低渗处理, 空气干燥制片法制作染色体标本, 利用Alu I 限制性内切酶介导的原位切口平移显带技术, 在点带石斑鱼有丝分裂中期染色体上诱导出带纹清晰、分散良好的多重带. 结果显示, 多数染色体显现出8-10条带纹, 最少的一对染色体也有4条带纹, 同源染色体带纹基本一致, 在每对染色体上的数目及其分布具明显特征性且相对稳定, 同时发现不同分裂相的同一号染色体上, 特征带纹鲜明一致, 带纹数目基本吻合, 具有可重复性和可操作性; 然后用人X和Y染色体文库特异DNA为探针, 对点带石斑鱼的有丝分裂中期分裂相染色体进行了描绘研究. 结果表明, 点带石斑鱼染色体组中测出了人X染色体特异DNA同源片段的3个保守同线群, 分别在点带石斑鱼的第7、第13和第22号同源染色体上, 它们的杂交信号最近边距着丝粒的百分比距离分别大约为62.3%、43.4%及44.4%; 人X染色质同源片段的大小约占点带石斑鱼基因组的4.63%. 但用人Y染色体DNA描绘点带石斑鱼染色体时, 没有检测出可见的同源片段. 研究结果可以为从低等脊椎动物到人类性染色体的进化过程提供一种新的研究思路.    相似文献   

20.
The Sxr (sex-reversed) region that carries a copy of the mouse Y chromosomal testis-determining gene can be attached to the distal end of either the Y or the X chromosome. During male meiosis, Sxr recombined freely between the X and Y chromosomes, with an estimated recombination frequency not significantly different from 50% in either direction. During female meiosis, Sxr recombined freely between the X chromosome to which it was attached and an X-autosome translocation. A male mouse carrying the original Sxra region on its Y chromosome, and the shorter Sxrb variant on the X, also showed 50% recombination between the sex chromosomes. Evidence of unequal crossing-over between the two Sxr regions was obtained: using five markers deleted from Sxrb, 3 variant Sxr regions were detected in 159 progeny (1.9%). Four other variants (one from the original cross and three from later generations) were presumed to have been derived from illegitimate pairing and crossing-over between Sxrb and the homologous region on the short arm of the Y chromosome. The generation of new variants throws light on the arrangement of gene loci and other markers within the short arm of the mouse Y chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号