首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Graft-versus-host disease (GVHD) is a severe and frequent complication of allogeneic bone marrow transplantation (BMT) that involves the gastrointestinal (GI) tract and lungs. The pathobiology of GVHD is complex and involves immune cell recognition of host Ags as foreign. We hypothesize a central role for the collectin surfactant protein A (SP-A) in regulating the development of GVHD after allogeneic BMT. C57BL/6 (H2b; WT) and SP-A-deficient mice on a C57BL/6 background (H2b; SP-A(-/-)) mice underwent allogeneic or syngeneic BMT with cells from either C3HeB/FeJ (H2k; SP-A-deficient recipient mice that have undergone an allogeneic BMT [SP-A(-/-)alloBMT] or SP-A-sufficient recipient mice that have undergone an allogeneic BMT) or C57BL/6 (H2b; SP-A-deficient recipient mice that have undergone a syngeneic BMT or SP-A-sufficient recipient mice that have undergone a syngeneic BMT) mice. Five weeks post-BMT, mice were necropsied, and lung and GI tissue were analyzed. SP-A(-/-) alloBMT or SP-A-sufficient recipient mice that have undergone an allogeneic BMT had no significant differences in lung pathology; however, SP-A(-/-)alloBMT mice developed marked features of GI GVHD, including decreased body weight, increased tissue inflammation, and lymphocytic infiltration. SP-A(-/-)alloBMT mice also had increased colon expression of IL-1β, IL-6, TNF-α, and IFN-γ and as well as increased Th17 cells and diminished regulatory T cells. Our results demonstrate the first evidence, to our knowledge, of a critical role for SP-A in modulating GI GVHD. In these studies, we demonstrate that mice deficient in SP-A that have undergone an allogeneic BMT have a greater incidence of GI GVHD that is associated with increased Th17 cells and decreased regulatory T cells. The results of these studies demonstrate that SP-A protects against the development of GI GVHD and establishes a role for SP-A in regulating the immune response in the GI tract.  相似文献   

2.
 The feasibility of inducing graft versus leukemia (GVL) effects with allogeneic T cells in recipients of autologous bone marrow transplantation (BMT) was studied in a murine model (BCL 1) of human B cell leukemia/lymphoma. Allogeneic cell therapy, induced by infusion with peripheral blood lymphocytes, a mixture of allogeneic spleen and lymph node cells and allogeneic activated cell therapy, induced by in vitro recombinant-interleukin-2(rIL-2)-activated allogeneic bone marrow cells in tumor-bearing mice, prevented disease development in adoptive BALB/c recipients. Concomitant in vivo activation of allogeneic lymphocytes with rIL-2 suppressed even more effectively the development of leukemia in secondary adoptive recipients of spleen cells obtained from treated mice. In contrast, in vivo administration of rIL-2 after syngeneic BMT, with or without equal numbers of syngeneic lymphocytes, led to disease development in secondary recipients. Our data suggest that effective cell therapy can be achieved after SBMT by allogeneic but not syngeneic lymphocytes and that anti-leukemic effects induced by allogeneic lymphocytes can be further enhanced by in vitro or in vivo activation of allogeneic effector cells with rIL-2. Therefore, cell therapy by allogeneic lymphocytes following autologous BMT could become an effective method for inducing GVL-like effects on minimal residual disease provided that graft versus host disease can be prevented or adequately controlled. Received: 14 May 1996 / Accepted: 6 August 1996  相似文献   

3.
Reducing the graft-vs-host disease (GVHD)-promoting capacity of allogeneic T cells while maintaining alloengraftment and graft-vs-leukemia effects remains an important but elusive goal in clinical bone marrow transplantation (BMT). We have recently demonstrated that a short course of high dose IL-2 administered at the time of BMT has a powerful protective effect against GVHD mortality in mice. This short course of IL-2 is able to protect mice from both acute and chronic GVHD without sacrificing alloengraftment or graft-vs-leukemia effects of allogeneic T cells. Because the early administration of IL-2 seems to be crucial for this effect, we have studied the early lymphoid repopulation events after lethal irradiation and allogeneic BMT. These studies show that there are consistent delays in splenic repopulation by allogeneic cells after BMT in IL-2-treated animals compared with their untreated cohorts. Even greater percent reductions were seen in donor splenic T cell populations in the first few days after BMT in IL-2-treated animals. Splenic cells with the CD3+CD4-CD8- phenotype were increased in IL-2 treated animals at days 3 and 4 after BMT. This phenotype resembles that of bone marrow-derived cells which have been previously shown to inhibit GVHD, suggesting a possible mechanism for the protective effect of IL-2.  相似文献   

4.
We have described a strain-specific graft-vs-host disease (GVHD)-like syndrome in syngeneic mouse radiation chimeras that developed in two of seven strains tested after cyclosporine A (CsA) therapy. It has been suggested, recently, that autoreactive T cells that develop as a result of CsA treatment may result from inhibition of clonal deletion and could be responsible for the development of this disease. To test this hypothesis, TCR expression, as a measure of tolerance induction, was analyzed in a series of syngeneic radiation chimeras (inducible and noninducible for syngeneic GVHD), with and without CsA treatment. Clonal deletion, as assessed by anti-TCR V beta chain mAb, appeared to occur normally in strains of mice inducible for syngeneic GVHD. Conversely, animals in which T cells bearing self-reactive TCR could be detected, did not develop the disease. This discrepancy did not appear to be due to a generalized difference in the effects of CsA on the various strains of mice used, as the effects of the drug (i.e., decreased mitogen responsiveness, inhibition of thymocyte maturation, etc.) appeared similar in all strains tested. Therefore, the development of CsA-induced autoreactive T cells as assessed by V beta TCR expression showed strain variation that did not correlate with the induction of syngeneic GVHD and suggested that other mechanisms may be involved in the development of this autoimmune phenomenon.  相似文献   

5.
The opposing problems of graft-vs-host disease (GVHD) and failure of alloengraftment present major obstacles to the application of bone marrow transplantation (BMT) across complete MHC barriers. The addition of syngeneic T-cell-depleted (TCD) bone marrow (BM) to untreated fully allogeneic marrow inocula in lethally irradiated mice has been previously shown to provide protection from GVHD. We have used this model to study the effects of allogeneic T cells on levels of chimerism in recipients of mixed marrow inocula. The results indicate that T cells in allogeneic BM inocula eliminate both coadministered recipient-strain and radioresistant host hematopoietic elements to produce complete allogeneic chimerism without clinical GVHD. To determine the role of GVH reactivity in this phenomenon, we performed similar studies in an F1 into parent combination, in which the genetic potential for GVHD is lacking. The presence of T cells in F1 marrow inocula led to predominant repopulation with F1 lymphocytes in such chimeras, even when coadministered with TCD-recipient-strain BM. These results imply that the ability of allogeneic BM cells removed by T cell depletion to increase levels of allochimerism may be mediated by a population which is distinct from that which produces GVHD. These results may have implications for clinical BM transplantation.  相似文献   

6.
The development of methods of avoiding graft-versus-host disease (GVHD) while retaining the alloengraftment-promoting and anti-leukemic effects of allogeneic T cells is a major goal of research in bone marrow transplantation (BMT). We have recently obtained evidence suggesting that natural suppressor (NS) cells derived from T cell-depleted (TCD) syngeneic marrow can protect against GVHD while permitting alloengraftment. We have now attempted to enrich and then propagate NS cells in vitro, with the goal of obtaining an enhanced anti-GVHD effect by adoptive transfer in vivo. Two long-term cell lines were generated culturing BMC depleted of Mac1-positive cells and of Mac1-positive plus Thy1-positive cells in high concentrations of IL-2. Both cell lines showed anti-GVHD effects when administered along with a GVHD-producing inoculum, while permitting complete allogeneic reconstitution. A clone derived from Mac1-depleted BMC protected completely against a more chronic pattern of GVHD. These cell lines demonstrated suppressive activity in vitro, cytolytic activity against a broad range of natural killer (NK)-sensitive and NK-resistant targets, and a novel cell surface phenotype, with characteristics of both alpha beta-TcR-bearing T cells and of NK cells. In some respects, these cells resemble LAK cells and differ from fresh NS cells, and from the cloned NS cells derived from spleens of total lymphoid irradiation (TLI)-treated mice and neonatal mice. To our knowledge, this is the first detailed phenotypic analysis of cell lines with in vivo anti-GVHD activity. If applicability can be demonstrated in large animal models, the ability to use bone marrow as a source of such protective cell lines might also have potential utility in clinical BMT.  相似文献   

7.
A 48-year-old man was treated by allogeneic bone marrow transplantation (BMT) in first remission of M4 acute myelogenous leukaemia (AML). He experienced no graft-versus-host disease (GVHD) and 7 months later he relapsed. Following further chemotherapy, he entered a second complete remission; however, he refused a further allogeneic or autologous BMT but agreed to immunotherapy with interleukin-2 and autologous lymphokine-activated killer (LAK) cells. He tolerated this treatment well but went on to develop grade II skin GVHD. Polymerase chain reaction studies of DNA microsatellites of the autologous LAK cells showed that they were of donor origin. The patient remained well for 9 months until, immediately following the introduction of prednisolone for his persistent GVHD, he relapsed. He declined further active treatment and died 5 months later. The case shows that IL-2/LAK cells can be safely given to patients who have experienced no GVHD following allo-BMT and are likely to be effective through an ongoing graft-versus-leukaemia effect.  相似文献   

8.
Cyclosporine is crucial for the prevention of organ allograft rejection and allogeneic graft-vs-host disease (GVHD). Despite its potent immunosuppressive activity, cyclosporine elicits a T cell-mediated autoimmune syndrome after autologous or syngeneic bone marrow transplantation, which has been termed syngeneic GVHD (SGVHD). Recent studies have shown that for disease manifestation, a cytoxan and radiation-sensitive T cell dependent host resistance mechanism must be eliminated, allowing the clonal expansion of autoreactive cells. This report characterizes the autoregulatory lymphocyte population, present in normal animals, capable of inhibiting the adoptive transfer of SGVHD. First, twice the number of unfractionated splenocytes from normal animals to those from autoimmune donors ensured complete inhibition of the adoptive transfer of immune reactivity. Second, the phenotype of this host resistance mechanism in normal splenocytes involves dual regulatory T cell subsets. A helper/inducer subset (W3/25+) must be cotransferred with a cytotoxic/suppressor subset (OX8+) in a ratio that approximates the normal ratio in normal unfractionated splenocytes in order to affect inhibition of the transfer of SGVHD. Moreover the specific inducer regulatory activity resides in the OX22-, W3/25+ subset of Th cells.  相似文献   

9.
Syngeneic graft vs. host disease (SGVHD) was first described as a graft vs. host disease-like syndrome that developed in rats following syngeneic bone marrow transplantation (BMT) and cyclosporin A (CsA) treatment. SGVHD can be induced by reconstitution of lethally irradiated mice with syngeneic bone marrow cells followed by 21 days of treatment with the immunosuppressive agent CsA. Clinical symptoms of the disease appear 2-3 wk following cessation of CsA therapy, and disease-associated inflammation occurs primarily in the colon and liver. CD4(+) T cells have been shown to play an important role in the inflammatory response observed in the gut of SGVHD mice. Time-course studies revealed a significant increase in migration of CD4(+) T cells into the colon during CsA therapy, as well as significantly elevated mRNA levels of TNF-α, proinflammatory chemokines, and cell adhesion molecules in colonic tissue of CsA-treated animals compared with BMT controls, as early as day 14 post-BMT. Homing studies revealed a greater migration of labeled CD4(+) T cells into the gut of CsA-treated mice at day 21 post-BMT than control animals via CsA-induced upregulation of mucosal addressin cell adhesion molecule. This study demonstrates that, during the 21 days of immunosuppressive therapy, functional mechanisms are in place that result in increased homing of CD4(+) T effector cells to colons of CsA-treated mice.  相似文献   

10.
Efficient reconstitution of the pool of peripheral T cells after hemopoietic stem cell transplantation (HSCT) is dependent on normal thymic function. However, the development of graft-vs-host disease (GVHD) in the context of allogeneic HSCT is associated with injurious effects on thymocyte development. In this study, we examined in models of syngeneic and allogeneic murine HSCT whether actual posttransplant thymic output is accurately reflected by analysis of signal-joint TCR rearrangement excision circles (sjTRECs). Our data demonstrate that the de novo generation of T cells following syngeneic HSCT of T cell-deficient B6.RAG2(-/-) (recombination-activating gene 2(-/-)) mice correlates firmly with an increase of sjTRECs in the thymus and spleen. However, the altered homeostasis of naive peripheral T cells in the presence of GVHD necessitates the combined analysis of cell division in vivo and determinations of sjTREC contents and total sjTREC numbers to draw informative conclusions. From our data, we substantiate that thymic output and peripheral division of newly generated T cells are diminished in the presence of acute GVHD in an experimental radiation/allogeneic HSCT model.  相似文献   

11.
In murine models of allogeneic bone marrow transplantation (BMT), MHC-mismatched recipients given a delayed infusion of donor leukocytes (DLI) at 21 days posttransplant develop significant GVHD whereas MHC-matched recipients do not. The current study was initially designed to test the hypothesis that small numbers of T cells in the MHC-mismatched donor bone marrow (BM) graft exacerbated graft-vs-host disease (GVHD) when DLI was administered at 21 days after BMT. Ex vivo depletion of Thy1+ cells from the donor BM had no impact on the severity of GVHD after DLI. However, depletion of donor T cells in vivo with a Thy1 allele-specific mAb given after BMT resulted in significantly more severe GVHD after DLI. Similar results were obtained in a MHC-matched model of allogeneic BMT, indicating that this was a general phenomenon and not model dependent. These results indicated that a population of donor-derived Thy1+ cells suppressed graft-vs-host reactivity after DLI. Results of experiments with thymectomized recipients demonstrated that an intact thymus was required for generation of the immunoregulatory donor cells. Experiments using TCR beta-chain knockout mice as BM donors indicated that the immunosuppressive Thy1+ cells coexpressed alphabetaTCR heterodimers. Similar experiments with CD4 and CD8 knockout donor BM suggested that the immunoregulatory Thy1+alphabetaTCR+ cells consisted of two subpopulations: a CD4+CD8- subpopulation and a CD4-CD8- subpopulation. Together, these results show that thymus-derived, Thy1+alphabetaTCR+ donor cells generated early after allogeneic BMT suppress the graft-vs-host reactivity of T cells given as DLI. These cells may mediate dominant peripheral tolerance after allogeneic BMT.  相似文献   

12.
Rapamycin (sirolimus) inhibits graft-vs-host disease (GVHD) and polarizes T cells toward Th2 cytokine secretion after allogeneic bone marrow transplantation (BMT). Therefore, we reasoned that ex vivo rapamycin might enhance the generation of donor Th2 cells capable of preventing GVHD after fully MHC-disparate murine BMT. Using anti-CD3 and anti-CD28 costimulation, CD4+ Th2 cell expansion was preserved partially in high-dose rapamycin (10 microM; Th2.rapa cells). Th2.rapa cells secreted IL-4 yet had reduced IL-5, IL-10, and IL-13 secretion relative to control Th2 cells. BMT cohorts receiving wild-type (WT) Th2.rapa cells, but not Th2.rapa cells generated from IL-4-deficient (knockout) donors, had marked Th2 skewing post-BMT and greatly reduced donor anti-host T cell alloreactivity. Histologic studies demonstrated that Th2.rapa cell recipients had near complete abrogation of skin, liver, and gut GVHD. Overall survival in recipients of WT Th2.rapa cells, but not IL-4 knockout Th2.rapa cells, was constrained due to marked attenuation of an allogeneic graft-vs-tumor (GVT) effect against host-type breast cancer cells. Delay in Th2.rapa cell administration until day 4, 7, or 14 post-BMT enhanced GVT effects, moderated GVHD, and improved overall survival. Therefore, ex vivo rapamycin generates enhanced donor Th2 cells for attempts to balance GVHD and GVT effects.  相似文献   

13.
The pathogenesis of idiopathic pneumonia syndrome (IPS), a noninfectious pulmonary complication of allogeneic bone marrow transplantation (BMT), has not been fully elucidated. However, several contributing factors have been proposed, including lung injury caused by reactive oxygen and nitrogen intermediates during preconditioning and development of graft-vs-host disease (GVHD). Studies on the role of reactive oxygen and nitrogen intermediates in IPS have yielded conflicting results. We have described a murine model of IPS, in which the onset of lung inflammation was delayed by several weeks relative to GVHD. This study evaluated whether the delay in onset of IPS was due to slow turnover of NO-producing, immunosuppressive alveolar macrophages (AM) following BMT. The results indicated that AM were immunosuppressive due to synthesis of NO. However, NO production and immunosuppressive activity by AM did not decline after BMT, but rather remained elevated throughout the 12-wk development of GVHD and IPS. In a 14-day model of IPS, continuous inhibition of NO with aminoguanidine (AG) reduced signs of IPS/GVHD, but also led to higher mortality. When AG treatment was initiated after onset of IPS/GVHD, rapid mortality occurred that depended on the severity of IPS/GVHD. AG-enhanced mortality was not due to inhibition of marrow engraftment, elevated serum TNF-alpha, liver injury, or hypertensive responses. In contrast, T cells were involved, because depletion of CD4(+) lymphocytes 24 h before AG treatment prevented mortality. Thus, NO production following allogeneic BMT affords a protective effect that helps down-regulate injury caused by T cells during GVHD and IPS.  相似文献   

14.
Continuous efforts are dedicated to develop immunotherapeutic approaches to neuroblastoma (NB), a tumor that relapses at high rates following high-dose conventional cytotoxic therapy and autologous bone marrow cell (BMC) reconstitution. This study presents a series of transplant experiments aiming to evaluate the efficacy of allogeneic BMC transplantation. Neuro-2a cells were found to express low levels of class I major histocompatibility complex (MHC) antigens. While radiation and syngeneic bone marrow transplantation (BMT) reduced tumor growth (P < 0.001), allogeneic BMT further impaired subcutaneous development of Neuro-2a cells (P < 0.001). Allogeneic donor-derived T cells displayed direct cytotoxic activity against Neuro-2a in vitro, a mechanism of immune-mediated suppression of tumor growth. The proliferation of lymphocytes from congenic mice bearing subcutaneous tumors was inhibited by tumor lysate, suggesting that a soluble factor suppresses cytotoxic activity of syngeneic lymphocytes. However, the growth of Neuro-2a cells was impaired when implanted into chimeric mice at various times after syngeneic and allogeneic BMT. F1 (donor-host) splenocytes were infused attempting to foster immune reconstitution, however they engrafted transiently and had no effect on tumor growth. Taken together, these data indicate: (1) Neuro-2a cells express MHC antigens and immunogenic tumor associated antigens. (2) Allogeneic BMT is a significantly better platform to develop graft versus tumor (GVT) immunotherapy to NB as compared to syngeneic (autologous) immuno-hematopoietic reconstitution. (3) An effective GVT reaction in tumor bearing mice is primed by MHC disparity and targets tumor associated antigens.  相似文献   

15.
Acute and chronic graft-versus-host disease (GVHD) remain the major complications limiting the efficacy of allogeneic hemopoietic stem cell transplantation. Chronic GVHD can evolve from acute GVHD, or in some cases may overlap with acute GVHD, but how acute GVHD evolves to chronic GVHD is unknown. In this study, in a classical CD8+ T cell-dependent mouse model, we found that pathogenic donor CD4+ T cells developed from engrafted hemopoietic stem cells (HSCs) in C57BL/6SJL(B6/SJL, H-2(b)) mice suffering from acute GVHD after receiving donor CD8+ T cells and HSCs from C3H.SW mice (H-2(b)). These CD4+ T cells were activated, infiltrated into GVHD target tissues, and produced high levels of IFN-gamma. These in vivo-generated CD4+ T cells caused lesions characteristic of chronic GVHD when adoptively transferred into secondary allogeneic recipients and also caused GVHD when administered into autologous C3H.SW recipients. The in vivo generation of pathogenic CD4+ T cells from engrafted donor HSCs was thymopoiesis dependent. Keratinocyte growth factor treatment improved the reconstitution of recipient thymic dendritic cells in CD8+ T cell-repleted allogeneic hemopoietic stem cell transplantation and prevented the development of pathogenic donor CD4+ T cells. These results suggest that de novo-generated donor CD4+ T cells, arising during acute graft-versus-host reactions, are key contributors to the evolution from acute to chronic GVHD. Preventing or limiting thymic damage may directly ameliorate chronic GVHD.  相似文献   

16.
Suicide gene therapy is one approach being evaluated for the control of graft-vs-host disease (GVHD) after allogeneic bone marrow transplantation (BMT). We recently constructed a novel chimeric suicide gene in which the entire coding region of HSV thymidine kinase (HSV-tk) was fused in-frame to the extracellular and transmembrane domains of human CD34 (DeltaCD34-tk). DeltaCD34-tk is an attractive candidate as a suicide gene in man because of the ensured expression of HSV-tk in all selected cells and the ability to rapidly and efficiently purify gene-modified cells using clinically approved CD34 immunoselection techniques. In this study we assessed the efficacy of the DeltaCD34-tk suicide gene in the absence of extended ex vivo manipulation by generating transgenic animals that express DeltaCD34-tk in the peripheral and thymic T cell compartments using the CD2 locus control region. We found that DeltaCD34-tk-expressing T cells could be purified to near homogeneity by CD34 immunoselection and selectively eliminated ex vivo and in vivo when exposed to low concentrations of GCV. The optimal time to administer GCV after allogeneic BMT with DeltaCD34-tk-expressing transgenic T cells was dependent on the intensity of the conditioning regimen, the leukemic status of the recipient, and the dose and timing of T cell infusion. Importantly, we used a controlled graft-vs-host reaction to promote alloengraftment in sublethally irradiated mice and provide a graft-vs-leukemia effect in recipients administered a delayed infusion of DeltaCD34-tk-expressing T cells. This murine model demonstrates the potential usefulness of DeltaCD34-tk-expressing T cells to control GVHD, promote alloengraftment, and provide a graft-vs-leukemia effect in man.  相似文献   

17.
Allogeneic hematopoietic cell or bone marrow transplantation (BMT) causes graft-versus-host-disease (GVHD). However, the involvement of the kidney in acute GVHD is not well-understood. Acute GVHD was induced in Lewis rats (RT1l) by transplantation of Dark Agouti (DA) rat (RT1a) bone marrow cells (6.0×107 cells) without immunosuppression after lethal irradiation (10 Gy). We examined the impact of acute GVHD on the kidney in allogeneic BMT rats and compared them with those in Lewis-to-Lewis syngeneic BMT control and non-BMT control rats. In syngeneic BMT and non-BMT control rats, acute GVHD did not develop by day 28. In allogeneic BMT rats, severe acute GVHD developed at 21–28 days after BMT in the skin, intestine, and liver with decreased body weight (>20%), skin rush, diarrhea, and liver dysfunction. In the kidney, infiltration of donor-type leukocytes was by day 28. Mild inflammation characterized by infiltration of CD3+ T-cells, including CD8+ T-cells and CD4+ T-cells, and CD68+ macrophages to the interstitium around the small arteries was noted. During moderate to severe inflammation, these infiltrating cells expanded into the peritubular interstitium with peritubular capillaritis, tubulitis, acute glomerulitis, and endarteritis. Renal dysfunction also developed, and the serum blood urea nitrogen (33.9±4.7 mg/dL) and urinary N-acetyl-β-D-glucosaminidase (NAG: 31.5±15.5 U/L) levels increased. No immunoglobulin and complement deposition was detected in the kidney. In conclusion, the kidney was a primary target organ of acute GVHD after BMT. Acute GVHD of the kidney was characterized by increased levels of urinary NAG and cell-mediated injury to the renal microvasculature and renal tubules.  相似文献   

18.
83 patients undergoing allogeneic or autologous BMT because of haematologic malignancies have been studied before and after transplantation at different intervals. The determinations consisted of lymphocyte counts, E-rosetting, lymphoblastic response, evaluation of serum immunoglobulin levels, skin testing, and in a smaller part of the patients surface marker studies using monoclonal antibodies of the BL-series. At first after BMT the lymphocyte and T cell counts went to normal between 4-18 weeks post transplant, about 4 weeks earlier in autologous than in allogeneic BMT. T suppressor cells showed an early increase compared to T helper cells which normalized much slower about 6 months after BMT. Lymphoblastic responses, however, tended to normal not before the second half of the first year both in autologous and allogeneic transplantation. Skin test reactivity became normal during the 2nd and 3rd year posttransplant, which was more complete in autologous than in allogeneic BMT. The IgG and IgM levels were depressed for half a year and IgA levels for 2 years. The most striking aspect was the multiphase course of lymphoblastic response in every individual patient. We suggest this to be the expression of sequential differentiation of donor lymphocytes.  相似文献   

19.
The p55 TNF-alpha receptor plays a critical role in T cell alloreactivity   总被引:11,自引:0,他引:11  
TNF-alpha is known to be an important mediator of tissue damage during allograft rejection and graft-vs-host disease (GVHD), but its role in supporting T cell responses to allogeneic Ags is unclear. We have studied this question by comparing normal mice with those lacking the p55 (p55 TNFR-/-) or p75 (p75 TNFR-/-) TNF-alpha receptors as donors in well-defined bone marrow transplant (BMT) models. Recipients of p55 TNFR-/- cells had significantly reduced mortality and morbidity from GVHD compared with the other two sources of T cells. In vitro, T cells lacking the p55 (but not the p75) TNF-alpha receptor exhibited decreased proliferation and production of Th1 cytokines in MLC. This defect was only partially restored by exogenous IL-2 and affected both CD4+ and CD8+ populations. CD8+ p55 TNFR-/- proliferation was impaired independently of IL-2 whereas CTL effector function was impaired in an IL-2-dependent fashion. Inhibition of TNF-alpha with TNFR:Fc in primary MLC also impaired the proliferation and Th1 differentiation of wild-type T cells. BMT mixing experiments demonstrated that the reduced ability of p55 TNFR-/- donor cells to induce GVHD was due to the absence of the p55 TNFR on T cells rather than bone marrow cells. These data highlight the importance of TNF-alpha in alloreactive T cell responses and suggest that inhibition of the T cell p55 TNF-alpha receptor may provide an additional useful therapeutic maneuver to inhibit alloreactive T cell responses following bone marrow and solid organ transplantation.  相似文献   

20.
With the proper experimental conditions, previous studies have demonstrated that syngeneic and autologous radiation chimeras treated with cyclosporine (CsA) routinely develop a syndrome resembling graft-vs-host disease (GVHD) after CsA is discontinued. The thymus is clearly important in the pathogenesis. Thymectomy prior to CsA prevents the development of syngeneic GVHD and the process can be adoptively transferred via thymocytes. The thymus, however, must be within the field of irradiation and the animal must be young. Here we examine how irradiation and advanced age influence the thymic immunopathologic changes induced by CsA and influence the recovery post-CsA. Young LEW rats, with or without pre-CsA mediastinal irradiation, demonstrate a marked involution of the thymic medulla with associated loss of medullary epithelium, Hassall's corpuscles, class II antigen expression, and maturation of thymocytes. While the control group underwent rapid and complete regeneration of the medulla post-CsA, however, the medullary changes in the irradiated group were prolonged or permanent. Most of these animals had changes of chronic GVHD. Older LEW rats had a more prominent medulla prior to CsA. In contrast to younger rats, the medulla did not show significant involution with CsA. While the Hassall's corpuscles disappeared, the medullae still had fusiform epithelium, dendritic cells, and class II antigen expression. Phenotype stains demonstrated many mature-appearing CD4+/CD8- lymphocytes. In light of evidence indicating the importance of the medullary microenvironment to the maintenance of self tolerance, the medullary effects of CsA are most likely essential to the development of autoimmunity. Young rats rapidly lose the ability to maintain tolerance. While unirradiated rats rapidly reestablish the proper microenvironment following CsA, irradiated rats have a prolonged loss. Older rats may resist the development of autoimmunity by retaining the medullary microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号