首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
目的扩增中国农大小型猪IAPP基因序列,分析其序列结构特点。方法提取中国农大小型猪血液基因组DNA,设计3对特异性引物进行PCR扩增,产物鉴定、测序和同源性比对分析。结果成功扩增出中国农大小型猪IAPP基因的1028bp的序列。结论经同源性比对分析显示,中国农大小型猪与人的IAPP基因的同源性为77%。  相似文献   

2.
银杏叶绿体petD基因的克隆与表达   总被引:1,自引:0,他引:1  
根据黑松、云杉、菠菜与玉米叶绿体petD基因序列设计引物,以银杏叶绿体基因组DNA为模板,PCR扩增克隆了银杏叶绿体petD基因(GenBank登录号为DQ923066,命名为GbpetD)的序列。序列分析显示,GbpetD基因组DNA序列编码区长1243bp,含1个内含子和2个外显子,其外显子序列编码177个氨基酸。相似性比对显示,该基因编码区序列与云杉、台东苏铁、黑松、莴苣、木薯、北美落叶松的petD基因核苷酸同源性为84%-99%,氨基酸序列同源性为85%-93%。系统进化树分析结果表明GbpetD蛋白质与黑松、北美落叶松、云杉、苏铁等裸子植物的petD蛋白质聚类关系最近。半定量RT—PCR分析表明,GbpetD基因在银杏叶和茎中表达,在叶中表达量最大。  相似文献   

3.
目的-克隆阴道毛滴虫氢化酶体腺苷酸激酶(AK)基因,并测定其序列,进行序列分析。方法-根据AK基因已知序列设计合成一对引物,应用PCR技术从阴道毛滴虫基因组DNA中扩增出AK基因,并将其克隆入pMD18-T simple载体。阳性克隆的重组质粒经酶切及PCR鉴定后,用双脱氧链末端终止法进行基因序列测定。应用BLAST软件辅助分析所测基因与Genbank中阴道毛滴虫氢化酶体AK序列的同源性。结果-PCR扩增得到特异的阴道毛滴虫氢化酶体腺苷酸激酶基因序列。酶切及PCR鉴定获得了正确的PT-AK重组质粒。测序表明,所克隆的AK基因大小为690bp,编码229个氨基酸。序列分析表明,所测基因与Genbank中阴道毛滴虫氢化酶体AK序列具有高度同源性(99.9%)。结论-克隆了阴道毛滴虫氢化酶体腺苷酸激酶基因,序列测定及同源性分析表明,所测基因与Genbank中阴道毛滴虫氢化酶体AK序列具有高度同源性。  相似文献   

4.
从发病长毛兔中分离鉴定了兔病毒性出血症病毒WHNRH株。参考GenBank中已登录的RHDV毒株序列对RHDV WHNRH分离株进行了全基因组序列测定与分析。设计5对扩增区段相互重叠的RHDV特异性引物,扩增除5′和3′末端以外的序列,采用设计锚引物的5′RACE方法以及针对RHDV 3′末端的polyA结构设计引物获得了RHDV WHNRH株的5′和3′末端序列。胶回收各PCR产物,连接pMD 18-T克隆载体,测得RHDV WHNRH分离株的基因组全长为7437nt(不包括polyA),与GenBank公布的全部共6株RHDV全基因序列进行同源性比较分析,同源性在89.0%~97.1%之间,ORF1同源性为89.0%~97.1%,编码氨基酸序列的同源性为95.2%~98.7%;ORF2的核酸苷序列同源性为92.1%~97.7%,编码氨基酸序列的同源性为94.1%~96.6%。  相似文献   

5.
猪Pit-1基因第三内含子序列的克隆测序   总被引:2,自引:0,他引:2  
根据不同物种间同一基因核苷酸序列的保守性及相似性的特点 ,在人和鼠的Pit 1基因第三外显子上设计上游引物 ,而将下游引物设计在猪Pit 1基因第四外显子上。利用聚合酶链式反应 (PCR)技术 ,扩增出猪Pit 1基因第三内含子序列 ,并经由酶切及序列同源性比对确认该序列即为猪Pit 1基因第三内含子序列。此序列的确定为下一步进行遗传变异分析的研究奠定了基础  相似文献   

6.
根据GenBank数据库中黑线仓鼠(Cricetulus barabensis)同源物种的FSHβ基因设计引物,利用PCR法在山东省沂南、临朐和曲阜3个地理种群随机选取的黑线仓鼠个体中克隆出FSHβ基因的部分外显子3,序列长度为775bp(GenBank登录号:GQ456067)。该序列与其他物种相应区域的同源性比较结果显示:黑线仓鼠与人(Homo sapiens)、大鼠(Rattus norvegicus)、小鼠(Mus musculus)、黑猩猩(Pantroglodytes)、羊(Ovis aries)等物种核苷酸序列的同源性为80%~96%,氨基酸序列的同源性为79%~100%。系统进化分析结果与物种亲缘关系的远近一致,说明该研究所得到的FSHβ基因序列可作为研究物种亲缘关系或遗传距离的理想标记。  相似文献   

7.
蜡样杆菌(Bacillus cereus)M22 Mn-SOD cDNA片断的克隆   总被引:1,自引:0,他引:1  
分析不同种细菌Mn SOD氨基酸序列的保守区域 ,设计一对简并引物进行RT PCR扩增 ,产物经T A载体连接转化大肠杆菌JM 1 0 9,筛选阳性克隆、测序并进行同源性分析 ,得到 4 36bpMn SODcDNA片段。根据此片段设计 5′端特异性引物 ,然后进行 5′RACE扩增 ,获得Mn SOD 5′端 387bpcDNA片断。将 2段序列进行拼接获得 5 94bpcDNA片断 ,编码 1 72个氨基酸。对推定氨基酸序列进行BLAST分析 ,结果表明其与炭疽芽孢杆菌 (Bacillusanthracis)同源性为 95 % ,且Gly77,Aly78,Phe86,Gln1 50 和Asp1 51 在已报道的Mn SOD中均存在 ,构成Mn SOD的活性中心。表明该序列为蜡样芽孢杆菌Mn SOD的cDNA序列  相似文献   

8.
摘要:以国内某3家SPF鸡场的SPF鸡胚成纤维细胞提取的基因组DNA为模板,参照已发表的序列,设计合成了4对检测内源性白血病病毒引物,分别检测gag基因、pol基因、env基因和LTR片段,结果显示4者检出阳性率很高(gag,29/46;pol,27/46;env,24/46;LTR,31/46).设计合成了8对引物,选取4片段检测均为阳性的样品之一,经PCR成功扩增出了8段连续的、相互部分重叠的目的DNA片段,分别连接入T载体进行克隆测序.用DNAstar软件对测序结果进行拼接,从一个鸡胚得到了内源性白血病病毒前病毒全基因组序列.比较分析发现,该序列env基因与已知的E亚群内源性病毒代表株env基因的核苷酸序列同源性在98.5%以上,全基因组序列同源性在99.1%以上,而与其他亚群代表株同源性相对较低,env基因同源性仅为56.3%~91.5%.  相似文献   

9.
张娟  宗卉  张利平 《生物工程学报》2008,24(10):1832-1836
以鸭肌肉组织DNA为模板,利用PCR-mtDNA技术成功克隆出了鸭mtDNA COIII基因(GenBank Accession No.DQ655706).对所克隆的序列分析表明.其序列包括鸭细胞色素C氧化酶III(COIII)基因全序列784 bp,通过同源性分析可知,动物的线粒体DNA COIII基因是相对保守的,利用此特性设计PCR-mtDNA方法鉴别检测鸭源性成分的特异性引物;以各种动物肌肉组织及饲料DNA为模板进行PCR扩增、经反复验证筛选出只能扩增出鸭DNA的目的片段,而不能扩增出其他动物DNA片段的特异性强、稳定性好的引物P3、P4;利用此引物PCR扩增鸭DNA的特异性片段为226 bp,对PCR产物进行测序分析可知与已克隆的鸭mtDNA COIII基因同源性达到100%,证明了所筛选引物的准确性.通过对不同含量的DNA模板溶液进行PCR扩增的方法,对筛选出的特异性引物P3、P4进行灵敏度试验,结果分析表明灵敏度约为0.001%,证明该PCR方法具有特异性强、灵敏度高的特点,完全可作为鉴别不同动物肌肉组织和饲料中鸭源性成分的方法.  相似文献   

10.
分析在植物开花过程中起重要作用的LEAFY(LFY)基因的保守区序列,设计1对长度均为23bp的PCR引物,以杧果基因组DNA为模板,采用PCR方法扩增出长为822bp的DNA片段,克隆入pGEM-T Easy载体。测序和序列分析表明,获得了杧果LFY同源基因(miLFY)3’端的1个片段,该片段有1个415bp的内含子,编码区共编码135个氨基酸,其序列已经在GenBank中登记(登录号AY189684)。在GenBank中进行同源性检索,发现其氨基酸序列与其它植物LFY同源基因的氨基酸序列同源性高达74%~97%,推测它们具有相似的功能。  相似文献   

11.
12.
The pathway of sterol biosynthesis is highly conserved in all eucaryotic cells. We demonstrated structural and functional conservation of the rate-limiting enzyme of the mammalian pathway, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoA reductase), between the yeast Saccharomyces cerevisiae and humans. The amino acid sequence of the two yeast HMG-CoA reductase isozymes was deduced from DNA sequence analysis of the HMG1 and HMG2 genes. Extensive sequence similarity existed between the region of the mammalian enzyme encoding the active site and the corresponding region of the two yeast isozymes. Moreover, each of the yeast isozymes, like the mammalian enzyme, contained seven potential membrane-spanning domains in the NH2-terminal region of the protein. Expression of cDNA clones encoding either hamster or human HMG-CoA reductase rescued the viability of hmg1 hmg2 yeast cells lacking this enzyme. Thus, mammalian HMG-CoA reductase can provide sufficient catalytic function to replace both yeast isozymes in vivo. The availability of yeast cells whose growth depends on human HMG-CoA reductase may provide a microbial screen to identify new drugs that can modulate cholesterol biosynthesis.  相似文献   

13.
Aims:  Statins – inhibitors of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase – are known to reduce blood cholesterol levels. In this paper, we present a Saccharomyces cerevisiae expression system, which enables quick evaluation of the sensitivity of the wild-type and/or mutant forms of human HMG-CoA reductase towards statins or other drugs.
Methods and results:  We analysed the sequence of the HMG-CoA reductase gene in DNA extracted from blood samples of 16 patients with cardiovascular disorders. We applied the yeast system to examine the sensitivity of the wild-type and mutated versions of the hHMG-CoA reductase to different types of statins.
Conclusion:  The yeast and mammalian HMG-CoA reductases demonstrate structural and functional conservation, and expression of human HMG-CoA reductase in yeast complements the lethal phenotype of strains lacking the HMG1 and HMG2 genes.
Significance and Impact of the Study:  These data indicate that a yeast expression system can serve to study the influence of selected mutations in human HMG-CoA reductase on the sensitivity of the enzyme to commonly prescribed statins. Our results suggest that this model system is suitable for the development and selection of lipid-lowering drugs as well as for the examination of DNA sequence variations in the context of statin therapy.  相似文献   

14.
Kiran U  Ram M  Khan MA  Khan S  Jha P  Alam A  Abdin MZ 《Bioinformation》2010,5(4):146-149
Plants synthesize a great variety of isoprenoid products that are required not only for normal growth and development but also for their adaptive responses to environmental challenges. However, despite the remarkable diversity in the structure and function of plant isoprenoids, they all originate from a single metabolic precursor, mevalonic acid. The synthesis of mevalonic acid is catalysed by the enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG- CoA reductase). The analysis of the amino acid sequence of HMG-CoA reductase from Artemisia annua L. plant showed that it belongs to class I HMG-CoA reductase family. The three dimensional structure of HMG-CoA reductase of Artemisia annua has been generated from amino acid sequence using homology modelling with backbone structure of human HMG-CoA reductase as template. The model was generated using the SWISS MODEL SERVER. The generated 3-D structure of HMG-CoA reductase was evaluated at various web interfaced servers to checks the stereo interfaced quality of the structure in terms of bonds, bond angles, dihedral angles and non-bonded atom-atom distances, structural as well as functional domains etc. The generated model was visualized using the RASMOL. Structural analysis of HMG-CoA reductase from Artemisia annua L. plant hypothesize that the N and C-terminals are positioned in cytosol by the two membrane spanning helices and the C-terminals domain shows similarity to the human HMG-CoA reductase enzyme indicating that they both had potential catalytic similarities.  相似文献   

15.
Both eukaryotes and archaebacteria use 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase to synthesize mevalonate, which eukaryotes employ in the production of sterols and archaebacteria need for the isoprenoid side chains of their unique and characteristic lipids. The drug mevinolin inhibits HMG-CoA reductase in eukaryotes and in the halophilic archaebacteria, and we have used a spontaneous mutation to mevinolin resistance in the construction of a selectable shuttle vector for Haloferax volcanii. Sequence analysis shows that this resistance determinant encodes an HMG-CoA reductase very like its eukaryotic homologs, but sharing with the one sequenced eubacterial HMG-CoA reductase (that of Pseudomonas mevalonii) few residues other than those common to all HMG-CoA reductases. Characterization of several spontaneous mevinolin-resistant mutants reveals that they are of two sorts: amplifications of the HMG-CoA reductase gene with varying amounts of flanking sequence, and point mutants upstream of the HMG-CoA reductase coding region. We compared sequence and expression of a mutant gene of the latter class to those of the wild-type gene. The point mutation found affects the TATA box-like "distal promoter element," results (like gene amplification) in resistance through the synthesis of excess gene product, and provides the first true genetic definition of an archaebacterial promoter.  相似文献   

16.
The gene (hmgA) for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) from the thermophilic archaeon Sulfolobus solfataricus P2 was cloned and sequenced. S. solfataricus HMG-CoA reductase exhibited a high degree of sequence identity (47%) to the HMG-CoA reductase of the halophilic archaeon Haloferax volcanii. Phylogenetic analyses of HMG-CoA reductase protein sequences suggested that the two archaeal genes are distant homologs of eukaryotic genes. The only known bacterial HMG-CoA reductase, a strictly biodegradative enzyme from Pseudomonas mevalonii, is highly diverged from archaeal and eukaryotic HMG-CoA reductases. The S. solfataricus hmgA gene encodes a true biosynthetic HMG-CoA reductase. Expression of hmgA in Escherichia coli generated a protein that both converted HMG-CoA to mevalonate and cross-reacted with antibodies raised against rat liver HMG-CoA reductase. S. solfataricus HMG-CoA reductase was purified in 40% yield to a specific activity of 17.5 microU per mg at 50 degrees C by a sequence of steps that included heat treatment, ion-exchange chromatography, hydrophobic interaction chromatography, and affinity chromatography. The final product was homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The substrate was (S)- not (R)-HMG-CoA; the reductant was NADPH not NADH. The Km values for HMG-CoA (17 microM) and NADPH (23 microM) were similar in magnitude to those of other biosynthetic HMG-CoA reductases. Unlike other HMG-CoA reductases, the enzyme was stable at 90 degrees C and was optimally active at pH 5.5 and 85 degrees C.  相似文献   

17.
We here report the isolation and nucleotide sequencing of a full-length 3.3-kilobase cDNA for the cytoplasmic form of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, a regulated enzyme in the cholesterol biosynthetic pathway. The cDNA was isolated from UT-1 cells, a compactin-resistant line of Chinese hamster ovary cells. UT-1 cells produce large amounts of mRNA for HMG-CoA synthase and the next enzyme in the pathway, HMG-CoA reductase, as a result of growth in the presence of compactin, a competitive inhibitor of the reductase. The identity of the cDNA for HMG-CoA synthase was confirmed through comparison of the NH2-terminal amino acid sequence predicted from the cDNA with that determined chemically from the purified enzyme. Anti-peptide antibodies directed against the amino acid sequence predicted from the cDNA precipitated HMG-CoA synthase activity from liver cytoplasm. The feeding of cholesterol to hamsters led to a decrease of more than 85% in the amount of mRNA for HMG-CoA synthase and HMG-CoA reductase in hamster liver. These data indicate that the mRNAs for cytoplasmic HMG-CoA synthase and for HMG-CoA reductase, two sequential enzymes in the cholesterol biosynthetic pathway, are coordinately regulated by cholesterol.  相似文献   

18.
A Ca2+/calmodulin-dependent kinase has been purified which catalyzed the phosphorylation and concomitant inactivation of both the microsomal native (100,000 Da) and protease-cleaved purified 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) (53,000 Da) fragments. This low molecular weight brain cytosolic Ca2+/calmodulin-dependent kinase phosphorylates histone H1, synapsin I, and purified HMG-CoA reductase as major substrates. The kinase, purified by sequential chromatography on DEAE-cellulose, calmodulin affinity resin, and high performance liquid chromatography (TSKG 3000 SW) is an electrophoretically homogeneous protein of approximately 110,000 Da. The molecular weight of the holoenzyme, substrate specificity, subunit protein composition, subunit autophosphorylation, subunit isoelectric points, and subunit phosphopeptide analysis suggest that this kinase of Mr 110,000 may be different from other previously reported Ca2+/calmodulin-dependent kinases. Maximal phosphorylation by the low molecular form of Ca2+/calmodulin-dependent kinase of purified HMG-CoA reductase revealed a stoichiometry of approximately 0.5 mol of phosphate/mol of 53,000-Da enzyme. Dephosphorylation of phosphorylated and inactivated native and purified HMG-CoA reductase revealed a time-dependent loss of 32P-bound radioactivity and reactivation of enzyme activity. Based on the results reported here, we propose that HMG-CoA reductase activity may be modulated by yet another kinase system involving covalent phosphorylation. The elucidation of a Ca2+/calmodulin-dependent HMG-CoA reductase kinase-mediated modulation of HMG-CoA reductase activity involving reversible phosphorylation may provide new insights into the molecular mechanisms involved in the regulation of cholesterol biosynthesis.  相似文献   

19.
A hybrid gene has been constructed consisting of coding sequence for the membrane domain of the endoplasmic reticulum protein 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase linked to the coding sequence for the soluble enzyme Escherichia coli beta-galactosidase. Expression of the hybrid gene in transfected Chinese hamster ovary cells results in the production of a fusion protein (HMGal) which is localized in the endoplasmic reticulum. The fusion protein contains the high-mannose oligosaccharides characteristic of HMG-CoA reductase. Importantly the beta-galactosidase activity of HMGal decreases when low density lipoprotein is added to the culture media. Therefore, the membrane domain of HMG-CoA reductase is sufficient to determine both correct intracellular localization and sterol-regulation of degradation. Mutant fusion proteins which lack 64, 85, or 98 amino acid residues from within the membrane domain of HMG-CoA reductase are found to be localized in the endoplasmic reticulum and to retain beta-galactosidase activity. However, sterol-regulation of degradation is abolished.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号