首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic mechanism of pyruvate phosphate dikinase (PPDK) from Bacteroides symbiosus was investigated with several different kinetic diagnostics. Initial velocity patterns were intersecting for AMP/PPi and ATP/Pi substrate pairs and parallel for all other substrate pairs. PPDK was shown to catalyze [14C]pyruvate in equilibrium phosphoenolpyruvate (PEP) exchange in the absence of cosubstrates, [14C]AMP in equilibrium ATP exchange in the presence of Pi/PPi but not in their absence, and [32P]Pi in equilibrium PPi exchange in the presence of ATP/AMP but not in their absence. The enzyme was also shown, by using [alpha beta-18O, beta, beta-18O2]ATP and [beta gamma-18O, gamma, gamma, gamma-18O3]ATP and 31P NMR techniques, to catalyze exchange in ATP between the alpha beta-bridge oxygen and the alpha-P nonbridge oxygen and also between the beta gamma-bridge oxygen and the beta-P nonbridge oxygen. The exchanges were catalyzed by PPDK in the presence of Pi but not in its absence. These results were interpreted to support a bi(ATP,Pi) bi(AMP,PPi) uni(pyruvate) uni(PEP) mechanism. AMP and Pi binding order was examined by carrying out dead-end inhibition studies. The dead-end inhibitor adenosine 5'-monophosphorothioate (AMPS) was found to be competitive vs AMP, noncompetitive vs PPi, and uncompetitive vs PEP. The dead-end inhibitor imidodiphosphate (PNP) was found to be competitive vs PPi, uncompetitive vs AMP, and uncompetitive vs PEP. These results showed that AMP binds before PPi. The ATP and Pi binding order was studied by carrying out inhibition, positional isotope exchange, and alternate substrate studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The mixed anhydride of oxalic and phosphoric acids, oxalyl phosphate, has been prepared by reaction of oxalyl chloride and inorganic phosphate in aqueous solution. The product was purified by anion exchange chromatography and characterized by 31P and 13C NMR. This acyl phosphate has a half-life of 51 h at pH 5.0 and 4 degrees C. Oxalyl phosphate, an analogue of phosphoenolpyruvate, is a slow substrate for pyruvate kinase, undergoing an enzyme-dependent phosphotransfer reaction to produce ATP from ADP. Oxalyl phosphate substitutes for phosphoenolpyruvate in the reaction catalyzed by pyruvate, phosphate dikinase. The acyl phosphate reacts with the free enzyme to give the phosphorylated form of the enzyme. Removal of the potent product inhibitor, oxalate, from the reaction mixtures by gel filtration chromatography permitted further reaction of the phosphorylated enzyme with pyrophosphate and AMP to give ATP and Pi in a single turnover assay. Oxalyl phosphate also served as a phospho group donor in a partial reaction catalyzed by phosphoenolpyruvate carboxykinase wherein GDP is phosphorylated at the expense of oxalyl phosphate.  相似文献   

3.
Initial velocity steady-state substrate kinetics for ATP phosphoribosyltransferase were determined in the direction reverse to the biosynthetic reaction and are consistent with a sequential kinetic mechanism. Histidine inhibited the reverse reaction cooperatively and completely. Product and alternate product inhibition studies were conducted to elucidate binding order. The alternate product β,γ-methylene ATP was competitive with respect to N1-phosphoribosyl-ATP and noncompetitive with respect to pyrophosphate. Phosphoribosylpyrophosphate was noncompetitive with respect to both substrates. These data and those of the biosynthetic direction reaction are in satisfactory quantitative agreement with the ordered Bi-Bi kinetic mechanism with ATP or phosphoribosyl-ATP binding to free enzyme.  相似文献   

4.
Evidence is presented based on requirements for exchange in the partial reactions, initial velocity and exchange kinetics and product inhibition, that the pyruvate, phosphate dikinase reaction of propionibacteria occurs by a nonclassical Tri Uni Uni Ping Pong mechanism. The mechanism involves a pyrophosphoryl enzyme, a phosphoryl enzyme, and the free enzyme, and three functionally distinct and independent substrate sites. On the first site, there is pyrophosphorylation of the enzyme by ATP with subsequent release of AMP. The pyrophosphoryl moiety then reacts at the second site with Pi yielding the product PPi and the phosphoryl from of the enzyme. At the third site pyruvate is phosphorylated yielding P-enolpyruvate and the free enzyme. The three catalytic sites are proposed to be linked by a histidyl residue which functions as a pyrophosphoyrl- and phosphoryl-carrier between the three sites. This proposal is based on the following observations. (A) The patterns of the double reciprocal plots of the initial velocities were all parallel; (b) product inhibition between each pair of substrates and products of the three partial reactions were competitive, i.e. ATP against AMP, Pi against PPi, and pyruvate against P-enolpyruvate; (c) the other product inhibitions, with one exception, were noncompetitive as required by the nonclassical ping-pong mechanism; (d) ATP or P-enolpyruvate was required for the Pi in equilibrium PPi exchange reaction which is in accord with the participation of a pyrosphosphoryl or phosphoryl form of the enzyme in this exchange; (e) the ATP in equilibrium AMP exchange and pyruvate in equilibrium P-enolpyruvate exchange did not require additional substrates. In addition, the inhibition and participation in the exchange reactions of the alpha,beta and beta,gamma-methylene analogues of ATP and of the methylene analogue of inorganic pyrophosphate were investigated and the results were in accord with the proposed mechanism. The combined evidence provides a well documented example of a three site nonclassical Tri Uni Uni Ping Pong mechanism.  相似文献   

5.
The order of interaction of substrates and products with human placental glutaminyl-tRNA synthetase was investigated in the aminoacylation reaction by using the steady-state kinetic methods. The initial velocity patterns obtained from both the glutamine-ATP and glutamine-tRNA substrate pairs were intersecting, whereas ATP and tRNA showed double competitive substrate inhibition. Dead-end inhibition studies with an ATP analog, tripolyphosphate, showed uncompetitive inhibition when tRNA was the variable substrate. The product inhibition studies revealed that PPi was an uncompetitive inhibitor with respect to tRNA. The noncompetitive inhibition by AMP versus tRNA was converted to uncompetitive by increasing the concentration of glutamine from 0.05 to 0.5 mM. These and other kinetic patterns obtained from the present study, together with our earlier finding that this human enzyme catalyzed the ATP-PPi exchange reaction in the absence of tRNA, enable us to propose a unique two-step, partially ordered sequential mechanism, with tRNA as the leading substrate, followed by random addition of ATP and glutamine. The products may be released in the following order: AMP, PPi and then glutaminyl-tRNA. The proposed mechanism involves both a quarternary complex including all three substrates and the intermediary formation of an enzyme-bound aminoacyl adenylate, common to the usual sequential and ping-pong mechanisms, respectively, for other aminoacyl-tRNA synthetases.  相似文献   

6.
1. Sugar-cane leaf pyruvate,P(i) dikinase was prepared free of enzymes that would interfere with studies on the stoicheiometry and mechanism of the reaction it catalyses. The reaction was unequivocally shown to involve the conversion of equimolar amounts of pyruvate, ATP and P(i) into phosphoenolpyruvate, AMP and PP(i). 2. The purified enzyme was stable at pH8.3 only if stored at about 20 degrees in the presence of Mg(2+) and a thiol-reducing reagent, care being taken to prevent the oxidation of the thiol. 3. The apparent Michaelis constants for phosphoenolpyruvate and PP(i) were 0.11mm and 0.04mm respectively and that for AMP was less than 4mum. 4. At pH8.3 the initial velocity of the reaction was about 6 times as fast in the direction towards phosphoenolpyruvate synthesis as in the reverse direction. 5. With the exception of ATP, all the products of the reaction in both directions were inhibitory. 6. The phosphate groups of PP(i) were derived from P(i) and from the terminal phosphate of ATP. 7. Isotope-exchange studies indicated that the reaction proceeds in the following steps:Enzyme+ATP+P(i) right harpoon over left harpoon Enzyme-P+AMP+PP(i)Enzyme-P+pyruvate right harpoon over left harpoon Enzyme+phosphoenolpyruvate  相似文献   

7.
Summary The mechanism of activation by inorganic phosphate and ATP of cardiac muscle pyruvate kinase was studied with the aid of steady-state kinetics. The enzyme was purified to homogeneity to a final specific activity of 400 units/ mg (phosphate buffer, pH 7.6, 25 °C). At pH 7.6 the enzyme displays Michaelis-Menten kinetics with respect to both its substrates, phosphoenolpyruvate and ADP. Substrate kinetic constants are: app.Km(phosphoenolpyruvate) –0.04 mM, app.Km(ADP) =0.22 mM. Under the conditions used in the standard assay the specific activity is greatly enhanced by inorganic phosphate (50 mM) or ATP (2.5 mM). Each of these modifiers, acting separately, increases the Vmax without seriously affecting Michaelis constants and Hill coefficients. In the presence of both Pi and ATP, only a decrease in Vmax was observed.The kinetics of activation by inorganic phosphate of pyruvate kinase was examined. Studying the effect of varying concentrations of Pi on the initial rate we obtained a hyperbolic saturation curve with the app. Km(Pi) = 20 mM and Vmax = 167 units/ mg. The evidence is presented that inorganic phosphate is a substrate for a side reaction catalyzed by cardiac pyruvate kinase. It is shown that in the presence of pyruvate, inorganic phosphate and ATP in the assay system, Pi is incorporated into acid-labile products of this reaction, inorganic pyrophosphate being one of them.These findings indicate the existence of an alternative reaction catalyzed by pyruvate kinase by which energy may be stored in the form of inorganic pyrophosphate.Abbreviations PEP phosphoenolpyruvate - Pi inorganic phosphate - TEA triethanolamine - EDTA ethylenediaminetetraacetate  相似文献   

8.
Bachmann BO  Townsend CA 《Biochemistry》2000,39(37):11187-11193
Streptomyces clavuligerus beta-lactam synthetase (beta-LS) was recently demonstrated to catalyze an early step in clavulanic acid biosynthesis, the ATP/Mg(2+)-dependent intramolecular closure of the beta-amino acid N(2)-(carboxyethyl)-L-arginine (CEA) to the monocyclic beta-lactam deoxyguanidinoproclavaminic acid (DGPC). Here we investigate the steady-state kinetic mechanism of the beta-LS-catalyzed reaction to better understand this unprecedented secondary metabolic enzyme. Initial velocity patterns were consistent with a sequential ordered bi-ter kinetic mechanism. Product inhibition studies with PP(i) and DGPC demonstrated competitive inhibition versus their cognate substrates ATP and CEA, respectively, and noncompetitive inhibition against their noncognate substrates. To clarify the order of substrate binding, the truncated substrate analogue N(2)-(carboxymethyl)-L-arginine was synthesized and demonstrated uncompetitive inhibition versus ATP and competitive patterns versus CEA. These data are consistent with ordered substrate binding, with ATP binding first, an abortive enzyme-DGPC complex, and PP(i) released as the last product. The pH dependence of V and V/K was determined and suggests that residues with a pK of 6.5 and 9.3 must be ionized for optimal activity. These observations were considered in the context of investigations of the homologous primary metabolic enzyme asparagine synthetase B, and a chemical mechanism is proposed that is consistent with the kinetic mechanism.  相似文献   

9.
Bacterial resistance to the aminoglycoside antibiotics is manifested primarily by enzymic modification of these drugs. One important mechanism of streptomycin modification is through ATP-dependent O-adenylation, catalyzed by streptomycin adenylyltransferase. Initial velocity patterns deduced from steady state kinetics indicate a sequential mechanism. Dead-end inhibition by tobramycin and neomycin is non-competitive versus streptomycin and uncompetitive versus ATP, indicative of ordered substrate binding where ATP binds first and then streptomycin. These results surmise that streptomycin adenylyltransferase follows an ordered, sequential kinetic mechanism in which one substrate (ATP) binds prior to the antibiotic and pyrophosphate is released prior to formation of AMP-streptomycin.  相似文献   

10.
Pyruvate phosphate dikinase (PPDK) reversibly catalyzes the conversion of ATP, phosphate, and pyruvate into AMP, pyrophosphate, and phosphoenolpyruvate (PEP), respectively. Since the nucleotide binding site (in the N-terminal domain) and the pyruvate/PEP binding site (in the C-terminal domain) are separated by approximately 45 A, it has been proposed that an intermediary domain, called the central domain, swivels between these remote domains to transfer the phosphate. However, no direct structural evidence for the swiveling central domain has been found. In this study, the crystal structures of maize PPDK with and without PEP have been determined at 2.3 A resolution. These structures revealed that the central domain is located near the pyruvate/PEP binding C-terminal domain, in contrast to the PPDK from Clostridium symbiosum, wherein the central domain is located near the nucleotide-binding N-terminal domain. Structural comparisons between the maize and C. symbiosum PPDKs demonstrated that the swiveling motion of the central domain consists of a rotation of at least 92 degrees and a translation of 0.5 A. By comparing the maize PPDK structures with and without PEP, we have elucidated the mode of binding of PEP to the C-terminal domain and the induced conformational changes in the central domain.  相似文献   

11.
Glycolysis in the human parasite Entamoeba histolytica is characterized by the absence of cooperative modulation and the prevalence of pyrophosphate-dependent (over ATP-dependent) enzymes. To determine the flux-control distribution of glycolysis and understand its underlying control mechanisms, a kinetic model of the pathway was constructed by using the software gepasi. The model was based on the kinetic parameters determined in the purified recombinant enzymes, and the enzyme activities, and steady-state fluxes and metabolite concentrations determined in amoebal trophozoites. The model predicted, with a high degree of accuracy, the flux and metabolite concentrations found in trophozoites, but only when the pyrophosphate concentration was held constant; at variable pyrophosphate, the model was not able to completely account for the ATP production/consumption balance, indicating the importance of the pyrophosphate homeostasis for amoebal glycolysis. Control analysis by the model revealed that hexokinase exerted the highest flux control (73%), as a result of its low cellular activity and strong AMP inhibition. 3-Phosphoglycerate mutase also exhibited significant flux control (65%) whereas the other pathway enzymes showed little or no control. The control of the ATP concentration was also mainly exerted by ATP consuming processes and 3-phosphoglycerate mutase and hexokinase (in the producing block). The model also indicated that, in order to diminish the amoebal glycolytic flux by 50%, it was required to decrease hexokinase or 3-phosphoglycerate mutase by 24% and 55%, respectively, or by 18% for both enzymes. By contrast, to attain the same reduction in flux by inhibiting the pyrophosphate-dependent enzymes pyrophosphate-phosphofructokinase and pyruvate phosphate dikinase, they should be decreased > 70%. On the basis of metabolic control analysis, steps whose inhibition would have stronger negative effects on the energy metabolism of this parasite were identified, thus becoming alternative targets for drug design.  相似文献   

12.
Tian Y  Suk DH  Cai F  Crich D  Mesecar AD 《Biochemistry》2008,47(47):12434-12447
o-Succinylbenzoyl-CoA (OSB-CoA) synthetase (EC 6.2.1.26) catalyzes the ATP-dependent condensation of o-succinylbenzoate (OSB) and CoA to form OSB-CoA, the fourth step of the menaquinone biosynthetic pathway in Bacillus anthracis. Gene knockout studies have highlighted this enzyme as a potential target for the discovery of new antibiotics. Here we report the first studies on the kinetic mechanism of B. anthracis OSB-CoA synthetase, classifying it as an ordered bi uni uni bi ping-pong mechanism. Through a series of pre-steady-state and steady-state kinetic studies in conjunction with direct binding studies, it is demonstrated that CoA, the last substrate to bind, strongly activates the first half-reaction after the first round of turnover. The activation of the first half-reaction is most likely achieved by CoA stabilizing conformations of the enzyme in the "F" form, which slowly isomerize back to the E form. Thus, the kinetic mechanism of OSB-CoA synthetase may be more accurately described as an ordered bi uni uni bi iso ping-pong mechanism. The substrate specificity of OSB-CoA synthetase was probed using a series of OSB analogues with alterations in the carboxylate groups. OSB-CoA shows a strong preference for OSB over all of the analogues tested as none were active except 4-[2-(trifluoromethyl)phenyl]-4-oxobutyric acid which exhibited a 100-fold decrease in k(cat)/K(m). On the basis of an understanding of OSB-CoA synthetase's kinetic mechanism and substrate specificity, a reaction intermediate analogue of OSB-AMP, 5'-O-{N-[2-(trifluoromethyl)phenyl]-4-oxobutyl}adenosine sulfonamide (TFMP-butyl-AMS), was designed and synthesized. This inhibitor was found to be an uncompetitive inhibitor to CoA and a mixed-type inhibitor to ATP and OSB with low micromolar inhibition constants. Collectively, these results should serve as an important forerunner to more detailed and extensive inhibitor design studies aimed at developing lead compounds against the OSB-CoA synthetase class of enzymes.  相似文献   

13.
14.
These studies provide further information regarding the mechanism of the light/dark-mediated regulation of pyruvate,Pi dikinase in leaves. It is shown that a catalysis-linked phosphorylation of pyruvate,Pi dikinase can be demonstrated following incubation of the enzyme with [32P]phosphoenolpyruvate or [beta-32P]ATP plus Pi, that the enzyme-bound phosphate is located on a histidine residue, and that this phosphate is retained during ADP-mediated inactivation. Further evidence is provided that phosphorylation of this histidine is a prerequisite for ADP-mediated inactivation through phosphorylation of a threonine residue from the beta-phosphate of ADP. It is demonstrated that diethylpyrocarbonate (which forms a derivative with histidine residues) prevents [32P]phosphoenolpyruvate-dependent labeling (catalytic labeling) and [beta-32P]ADP-dependent labeling (inactivation labeling) of the enzyme. In addition, it is demonstrated that oxalate, an analog of pyruvate, competitively inhibits ADP-dependent inactivation with respect to ADP. The significance of these results is discussed with regard to the mechanism of regulation of pyruvate,Pi dikinase in vivo.  相似文献   

15.
Pyruvate orthophosphate dikinase has been identified in the green grains of eight cereal grasses, most of which are classified as C(3) plants. The wheat (Triticum aestivum L. cv. Lerma Rojo) grain enzyme was further investigated: activity was low in very young grains, increased to a maximum at about 25 days after anthesis, then returned to a low level as the grain matured. It appeared to be located in the aleurone layer. A procedure was developed for obtaining partially purified preparations of pyruvate orthophosphate dikinase from the ears of wheat, oat (Avena sativa L.), barley (Hordeum distichum L.), and rye (Secale cereale L.). These preparations were suitable for measuring activities in both the forward and reverse reaction directions. The affinities of these enzymes for the six substrates (pyruvate, orthophosphate, and ATP in the forward reaction; phosphoenolpyruvate, pyrophosphate, and AMP in the reverse reaction) were determined and found to be similar to the reported affinities of the enzyme from the leaves of the C(4) plant Zea mays. A possible role for pyruvate orthophosphate dikinase in cereal grains is considered briefly.  相似文献   

16.
A steady-state kinetic analysis with evaluation of product inhibition was accomplished with purified rat liver flavokinase and FAD synthetase. For flavokinase, Km values were calculated as approximately 11 microM for riboflavin and 3.7 microM for ATP. Ki values were calculated for FMN as 6 microM against riboflavin and for ZnADP as 120 microM against riboflavin and 23 microM against ZnATP. From the inhibition pattern, the flavokinase reaction followed an ordered bi bi mechanism in which riboflavin binds first followed by ATP; ADP is released first followed by FMN. For FAD synthetase, Km values were calculated as 9.1 microM for FMN and 71 microM for MgATP. Ki values were calculated for FAD as 0.75 microM against FMN and 1.3 microM against MgATP and for pyrophosphate as 66 microM against FMN. The product inhibition pattern suggests the FAD synthetase reaction also followed an ordered bi bi mechanism in which ATP binds to enzyme prior to FMN, and pyrophosphate is released from enzyme before FAD. Comparison of Ki values with physiological concentrations of FMN and FAD suggests that the biosynthesis of FAD is most likely regulated by this coenzyme as product at the stage of the FAD synthetase reaction.  相似文献   

17.
Initial velocity studies in the absence and presence of product and dead-end inhibitors suggest a steady-state random mechanism for malic enzyme in the direction of reductive carboxylation of pyruvate. For this quadreactant enzymatic reaction (Mn2+ is a pseudoreactant), initial velocity patterns were obtained under conditions in which two substrates were maintained at saturating concentrations while one reactant was varied at several fixed concentrations of the other. Data from the resulting reciprocal plots, analyzed in terms of a bireactant mechanism, are consistent with a sequential mechanism with an obligatory order of addition of metal prior to pyruvate. NAD is competitive against NADH whether pyruvate and CO2 are maintained at low or high concentrations, whereas it is noncompetitive against pyruvate and CO2. Thio-NADH, alpha-ketobutyrate, and nitrite were used as dead-end analogs of NADH, pyruvate, and CO2, respectively. Thio-NADH is competitive against NADH, whereas it is noncompetitive against pyruvate and CO2, in accordance with a random mechanism. alpha-Ketobutyrate and nitrite gave noncompetitive inhibition against all substrates. The noncompetitive patterns observed for alpha-ketobutyrate versus pyruvate and nitrite versus CO2 suggest binding of the inhibitor to both the E.Mn.NADH and E.Mn.NAD complexes. Primary deuterium isotope effects are equal on all kinetic parameters, in agreement with the random mechanism, and suggest equal off-rates for NAD from E.Mn.NAD as well as pyruvate and NADH from E.Mn.NADH.pyruvate. Data are consistent with an overall symmetry in the malic enzyme reaction in the two reaction directions with a requirement for metal bound prior to pyruvate and malate.  相似文献   

18.
Pyruvate phosphate dikinase (PPDK) is a multidomain protein that catalyzes the interconversion of ATP, pyruvate, and phosphate with AMP, phosphoenolpyruvate (PEP), and pyrophosphate using its central domain to transport phosphoryl groups between two distant active sites. In this study, the mechanism by which the central domain moves between the two catalytic sites located on the N-terminal and C-terminal domains was probed by expressing this domain as an independent protein and measuring its structure, stability, and ability to catalyze the ATP/phosphate partial reaction in conjunction with the engineered N-terminal domain protein (residues 1-340 of the native PPDK). The encoding gene was engineered to express the central domain as residues 381-512 of the native PPDK. The central domain was purified and shown to be soluble, monomeric (13,438 Da), and stable (deltaG = 4.3 kcal/mol for unfolding in buffer at pH 7.0, 25 degrees C) and to possess native structure, as determined by multidimensional heteronuclear NMR analysis. The main chain structure of the central domain in solution aligns closely with that of the X-ray structure of native PPDK (the root-mean-square deviation is 2.2 A). Single turnover reactions of [14C]ATP and phosphate, carried out in the presence of equal concentrations of central domain and the N-terminal domain protein, did not produce the expected products, in contrast to efficient product formation observed for the N-terminal central domain construct (residues 1-553 of the native PPDK). These results are interpreted as evidence that the central domain, although solvent-compatible, must be tethered by the flexible linkers to the N-terminal domain for the productive domain-domain docking required for efficient catalysis.  相似文献   

19.
Rho-Kinase is a serine/threonine kinase that is involved in the regulation of smooth muscle contraction and cytoskeletal reorganization of nonmuscle cells. While the signal transduction pathway in which Rho-Kinase participates has been and continues to be extensively studied, the kinetic mechanism of Rho-Kinase-catalyzed phosphorylation has not been investigated. We report here elucidation of the kinetic mechanism for Rho-Kinase by using steady-state kinetic studies. These studies used the kinase domain of human Rho-Kinase II (ROCK-II 1-534) with S6 peptide (biotin-AKRRRLSSLRA-NH(2)) as the phosphorylatable substrate. Double-reciprocal plots for two-substrate kinetic data yielded intersecting line patterns with either ATP or S6 peptide as the varied substrate, indicating that Rho-Kinase utilized a ternary complex (sequential) kinetic mechanism. Dead-end inhibition studies were used to investigate the order of binding for ATP and the peptide substrate. The ATP-competitive inhibitors AMP-PCP and Y-27632 were noncompetitive inhibitors versus S6 peptide, and the S6 peptide analogue S6-AA (acetyl-AKRRRLAALRA-NH(2)) was a competitive inhibitor versus S6 peptide and a noncompetitive inhibitor versus ATP. These results indicated a random order of binding for ATP and S6 peptide.  相似文献   

20.
A kinetic analysis of the incorporation of AMP into tRNA lacking the 3'-terminal residue by tRNA nucleotidyltransferase (EC 2.2.7.25) from Escherichia coli is presented. Initial velocity studies demonstrate that the mechanism is sequential and that high concentrations of tRNA give rise to substrate inhibition which is noncompetitive with respect to ATP. In addition, the substrate inhibition is more pronounced in the presence of pyrophosphate, which suggests the formation of an inhibitory enzyme-pyrophosphate-tRNA complex. Noncompetitive product inhibition is observed between all possible pairs of substrates and products. ADP and alpha,beta-methylene adenosine triphosphate are competitive dead end inhibitors of ATP, while the latter is a noncompetitive dead end inhibitor of the tRNA substrate. A nonrapid equilibrium random mechanism is proposed which is consistent with these data and offers an explanation for the noncompetitive substrate inhibition by tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号