首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to a meiosis-inducing hormone, 1-methyladenine (1-MA), starfish oocytes undergo reinitiation of meiosis with germinal vesicle breakdown. The 1-MA-initiated signal is, however, inhibited by prior microinjection of pertussis toxin into the oocytes (Shilling, F., Chiba, K., Hoshi, M., Kishimoto, T., and Jaffe, L.A. (1989) Dev. Biol. 133, 605-608), suggesting that a pertussis-toxin-sensitive guanine-nucleotide-binding protein (G protein) is involved in the 1-MA-induced signal transduction. Based on these findings, we purified a G protein serving as the substrate of pertussis toxin from the plasma membranes of starfish oocytes. The purified G protein had an alpha beta gamma-trimeric structure consisting of 39-kDa alpha, 37-kDa beta, and 8-kDa gamma subunits. The 39-kDa alpha subunit contained a site for ADP-ribosylation catalyzed by pertussis toxin. The alpha subunit was also recognized by antibodies specific for a common GTP-binding site of many mammalian alpha subunits or a carboxy-terminal ADP-ribosylation site of mammalian inhibitory G-alpha. An antibody raised against mammalian 36-/35-kDa beta subunits strongly reacted with the 37-kDa beta subunit of starfish G protein. The purified starfish G protein had a GTP-binding activity with a high affinity and displayed a low GTPase activity. The activity of the G protein serving as the substrate for pertussis-toxin-catalyzed ADP-ribosylation was inhibited by its association with a non-hydrolyzable GTP analogue. Thus, the starfish G protein appeared to be similar to mammalian G proteins at least in terms of its structure and properties of nucleotide binding and the pertussis toxin substrate. A possible role of the starfish G protein is also discussed in the signal transduction between 1-MA receptors and reinitiation of meiosis with germinal vesicle breakdown.  相似文献   

2.
We have identified by immunoblotting and ADP-ribosylation by cholera toxin and pertussis toxin the presence of Mr 43 and 46 KDa Gs, and 39 and 41 KDa Gi;.. subunits in rat parotid gland plasma membranes but not in granule membranes. A Mr 28 KDa polypeptide that served as substrate for ADP-ribosylation by both cholera toxin and pertussis toxin was present exclusively in granule membranes. Photoaffinity crosslinking of [-32P]GTP showed the presence of high molecular weight GTP-binding proteins (Mr 160,100 KDa) in granule membranes. Six low molecular weight GTP-binding proteins (Mr 21–28 KDa) were differentially distributed in both plasma membranes and granule membranes. The present study identifies various GTP-binding proteins in rat parotid gland plasma membranes and granule membranes, and demonstrates the presence of distinct molecular weight GTP-binding proteins in granule membranes. These granule-associated GTP-binding proteins may be involved in secretory processes.  相似文献   

3.
Bovine peripheral neutrophils contain high levels of a 40-kDa pertussis toxin substrate, which was found highly enriched in a light membrane fraction upon subcellular fractionation of neutrophil homogenates. The 40-kDa pertussis toxin substrate, referred to as alpha n, was purified to near homogeneity from this fraction by sequential ion-exchange, gel-filtration and hydrophobic chromatography. Purified alpha n was shown to interact with beta gamma subunits, undergo ADP-ribosylation by pertussis toxin, and bind guanine nucleotides with high affinity. The mobility of purified alpha n on SDS/polyacrylamide gels was intermediate between those of the alpha subunits of Gi and Go, purified from bovine brain, and slightly lower than the mobility of the alpha subunit of transducin (Gt). Several polyclonal antisera against the alpha subunits of bovine Gt and Go did not react with alpha n on immunoblots. CW 6, a polyclonal antiserum reactive against the bovine alpha i, reacted only minimally with alpha n. These results suggest that the major pertussis toxin substrate of bovine neutrophils, designated Gn, is structurally different from previously identified pertussis toxin substrates and may represent a novel guanine-nucleotide-binding protein.  相似文献   

4.
The ontogenesis of alpha 2-adrenoceptors and GTP-binding proteins and their coupling activity were investigated in telencephalon membranes of developing rats. The manganese-induced elevation of [3H]clonidine binding was increased in an age-dependent manner but the guanosine 5'-O-(3-thio)triphosphate-induced decrease in binding did not change. The extent of the binding of [3H]clonidine at 15 nM (saturable concentration) increased in an age-dependent manner and reached the adult level at 4 days after birth. Cholera toxin and pertussis toxin catalyzed ADP-ribosylation of proteins of 46 and 41/39 kilodaltons (kDa) in solubilized cholate extracts of the membranes. The 41/39-kDa proteins ADP-ribosylated by pertussis toxin (Gi alpha + Go alpha) were increased with age and reached the adult level at day 12, whereas the 46-kDa protein (Gs alpha) reached its peak on day 12 and then decreased to the fetal level at the adult stage. The immunoblot experiments of the homogenates with antiserum (specific antibody against alpha- and beta-subunit of GTP-binding proteins) demonstrated that the 39-kDa alpha-subunit of (Go alpha) and the 36-kDa beta-subunit of GTP-binding protein (beta 36) increased with postnatal age. In contrast, 35-kDa beta-subunit (beta 35) did not change. From these results, it is suggested that the coupling activity of alpha 2-adrenoceptor with GTP-binding protein gradually develops in a manner parallel with the increase of alpha 2-adrenoceptor and pertussis toxin sensitive GTP-binding proteins, Gi, and that alpha 39 beta 36 gamma may be related to the differentiation and/or growth of nerve cells in rat telencephalon.  相似文献   

5.
Dopaminergic inhibition of prolactin release from the anterior pituitary may be mediated through both the adenylate cyclase and Ca2+ mobilization/phosphoinositide pathways. The D2-dopamine receptor of the bovine anterior pituitary has been partially purified by affinity chromatography on CMOS-Sepharose (immobilized carboxymethyleneoximinospiperone). Reinsertion of these partially purified receptor preparations into phospholipid vesicles reconstituted guanine nucleotide-sensitive high affinity agonist binding, agonist-promoted GTPase and 35S-labeled guanosine 5'-O-(thiotriphosphate) [( 35S]GTP gamma S) binding activity in these preparations. Pertussis toxin treatment of the purified receptor preparation abolished agonist-stimulated GTPase and guanine nucleotide-sensitive high affinity agonist binding. These observations suggest that the receptor copurifies with an endogenous, pertussis toxin-sensitive guanine nucleotide binding protein (N). [32P]ADP-ribosylation of affinity-purified D2 receptor preparations by pertussis toxin revealed the presence of a substrate of Mr 39,000-40,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Peptide maps generated using elastase of the [32P]ADP-ribosylated endogenous N protein, transducin, and Ni and No from brain revealed similarities but not identity between the endogenous pituitary N protein and brain Ni and No. Immunoblotting of the partially purified D2 receptor preparations showed an Mr 39,000-40,000 band with an Ni-specific antiserum raised against a synthetic peptide, and with RV3, an No-specific anti-serum, but not with CW6, an antiserum strongly reactive with brain Ni. Several lines of evidence indicate that endogenous pituitary N protein is functionally coupled to the D2 receptor. As measured by [35S]GTP gamma S binding, ratios of 0.2-0.6 mol N protein/mol receptor were observed. Association of N protein with the D2 receptor was increased by agonist pretreatment and decreased by guanine nucleotides. These results suggest that No and/or a form of Ni distinct from the Mr 41,000 pertussis toxin substrate (Ni) is the predominant N protein functionally coupled with the D2-dopamine receptor of anterior pituitary.  相似文献   

6.
Tumor necrosis factor (TNF) is a monokine that induces pleiotropic events in both transformed and normal cells. These effects are initiated by the binding of TNF to high affinity cell surface receptors. The post-receptor events and signaling mechanisms induced by TNF, however, have remained unknown. The present studies demonstrate the presence of a single class of high affinity receptors on membranes prepared from HL-60 promyelocytic leukemic cells. The interaction of TNF with these membrane receptors was associated with a 3.8-fold increase in specific binding of the GTP analogue, GTP gamma S. Scatchard analysis of GTP gamma S binding data demonstrated that TNF stimulates GTP binding by increasing the affinity of available sites. The TNF-induced stimulation of GTP binding was also associated with an increase in GTPase activity. Moreover, the increase in GTPase activity induced by TNF was sensitive to pertussis toxin. The results also demonstrate that TNF similarly increased GTP binding and pertussis toxin-sensitive GTPase activity in membranes from mouse L929 fibroblasts, thus indicating that these effects are not limited to hematopoietic cells. Analysis of HL-60 membranes after treatment with pertussis toxin in the presence of [32P]NAD revealed three substrates with relative molecular masses of approximately Mr 41,000, 40,000, and 30,000. In contrast, L929 cell membranes had only two detectable pertussis toxin substrates of approximately Mr 41,000 and 40,000. Although the Mr 41,000 pertussis toxin substrate represents the guanine nucleotide-binding inhibitory protein Gi, the identities of the Mr 40,000 and Mr 30,000 substrates remain unclear. In any event, inhibition of the TNF-induced increase in GTPase activity and ADP-ribosylation of Gi by pertussis toxin suggested that TNF might act by increasing GTPase activity of the Gi protein. However, the results further indicate that TNF has no detectable effect on basal or prostaglandin E2-stimulated cAMP levels in HL-60 cells. Taken together, these findings indicate that a pertussis toxin-sensitive GTP-binding protein other than Gi, and possibly the Mr 40,000 substrate, is involved in the action of TNF. Finally, the demonstration that pertussis toxin inhibited TNF-induced cytotoxicity in L929 cells supports the presence of a GTP-binding protein which couples TNF-induced signaling to a biologic effect.  相似文献   

7.
ADP-ribosylation of transducin by pertussis toxin   总被引:8,自引:0,他引:8  
Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [32P]ADP-ribosylated by pertussis toxin and [32P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [32P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [32P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [32P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma. The amino terminus of T alpha, while it does not contain the pertussis toxin ADP-ribosylation site, appeared critical to its reactivity.  相似文献   

8.
We have isolated the major GTP-binding proteins from myeloid HL-60 cell plasma membranes. Two pertussis toxin substrates with similar apparent molecular masses of 40 and 41 kDa, respectively, are contained in these preparations, with both proteins being ADP-ribosylated to a similar extent. Partial chymotryptic proteolysis of fractions containing the [32P]ADP-ribosylated 40-kDa GTP-binding protein alpha subunit demonstrated production of 32P-labeled peptides of 28 and 16 kDa which were not observed after partial proteolysis of fractions containing solely the 41-kDa protein. Similarly, mild acid hydrolysis produced an additional 28-kDa fragment only from fractions containing the 40-kDa protein. The results presented here indicate the presence of two distinct pertussis toxin substrates in myeloid cells. The 41-kDa pertussis toxin substrate is likely to represent the alpha subunit of the inhibitory GTP-binding regulatory protein of adenylate cyclase, whereas the 40-kDa substrate may represent the alpha subunit of the GTP-binding protein which is coupled to chemoattractant receptors. In addition to the pertussis toxin substrates, an additional major peak of guanosine 5'-(3-O-thio)triphosphate-binding activity closely corresponded to the appearance of a 23-kDa protein.  相似文献   

9.
Gz, a guanine nucleotide-binding protein with unique biochemical properties   总被引:12,自引:0,他引:12  
Cloning of a complementary DNA (cDNA) for Gz alpha, a newly appreciated member of the family of guanine nucleotide-binding regulatory proteins (G proteins), has allowed preparation of specific antisera to identify the protein in tissues and to assay it during purification from bovine brain. Additionally, expression of the cDNA in Escherichia coli has resulted in the production and purification of the recombinant protein. Purification of Gz from bovine brain is tedious, and only small quantities of protein have been obtained. The protein copurifies with the beta gamma subunit complex common to other G proteins; another 26-kDa GTP-binding protein is also present in these preparations. The purified protein could not serve as a substrate for NAD-dependent ADP-ribosylation catalyzed by either pertussis toxin or cholera toxin. Purification of recombinant Gz alpha (rGz alpha) from E. coli is simple, and quantities of homogeneous protein sufficient for biochemical analysis are obtained. Purified rGz alpha has several properties that distinguish it from other G protein alpha subunit polypeptides. These include a very slow rate of guanine nucleotide exchange (k = 0.02 min-1), which is reduced greater than 20-fold in the presence of mM concentrations of Mg2+. In addition, the rate of the intrinsic GTPase activity of Gz alpha is extremely slow. The hydrolysis rate (kcat) for rGz alpha at 30 degrees C is 0.05 min-1, or 200-fold slower than that determined for other G protein alpha subunits. rGz alpha can interact with bovine brain beta gamma but does not serve as a substrate for ADP-ribosylation catalyzed by either pertussis toxin or cholera toxin. These studies suggest that Gz may play a role in signal transduction pathways that are mechanistically distinct from those controlled by the other members of the G protein family.  相似文献   

10.
D J Carty  R Iyengar 《FEBS letters》1990,262(1):101-103
Purified preparations of human erythrocyte G-proteins contain a 43 kDa pertussis toxin substrate which appears to be the alpha-subunit of a heterotrimeric GTP-binding protein. The 43 kDa protein is recognized by antisera that are sequence-specific for peptides encoding a sequence common to all 39-53 kDa G-protein alpha-subunits. G alpha o-specific antiserum did not recognize 43 or 40-41 kDa alpha-subunits. AS/6, which recognizes the alpha i proteins, recognized 43 kDa as well as 40-41 kDa proteins. Of the three antisera specific for individual members of the alpha i family, only the Gi3-specific antiserum recognized the 43 kDa erythrocyte G-protein. However, 40-41 kDa forms of all three alpha is are present. These observations indicate that human erythrocytes contain a novel 43 kDa form of Gi3.  相似文献   

11.
A guanine-nucleotide-binding protein (G-protein) was purified from cholate extracts of bovine brain membranes by sequential DEAE-Sephacel, Ultrogel AcA-34, heptylamine-Sepharose and Sephadex G-150 chromatography. Guanosine 5'-[gamma-[35S]thio]triphosphate (GTP[35S])-binding activity copurified with a 25,000 Da peptide and a 35,000-36,000 Da protein doublet. Neither pertussis toxin nor cholera toxin catalysed the ADP-ribosylation of a protein associated with the GTP[35S]-binding activity. Photoaffinity labelling of the purified protein with 8-azido[gamma-32P]GTP indicated that the GTP-binding site resides on the 25,000 Da protein. The 35,000-36,000 Da protein doublet was electrophoretically indistinguishable from the beta-subunits of other GTP-binding proteins, and the 36,000 Da protein was recognized by antiserum to oligomeric Gt. The purified protein specifically bound 17.2 nmol of GTP[35S]/mg of protein. The Kd of the binding site for radioligand was approx. 15 nM. The brain GTP-binding protein co-migrated during SDS/polyacrylamide-gel electrophoresis with a GTP-binding protein, named Gp, purified from human placenta [Evans, Brown, Fraser & Northup (1986) J. Biol. Chem. 261, 7052-7059], and cross-reacted with antiserum raised against the placental protein, but not with antiserum raised to brain Go. SDS/polyacrylamide-gel electrophoresis of the brain and placental GTP-binding proteins in the presence of Staphylococcus aureus V8 protease yielded identical peptide maps.  相似文献   

12.
Bovine cerebral cortex contains two major substrates for ADP-ribosylation by pertussis toxin: a 39-kDa protein, alpha 39, and a 41-kDa protein, alpha 41 (Neer, E. J., Lok, J. M., and Wolf, L. G. (1984) J. Biol. Chem. 259, 14222-14229). Both of these proteins bind guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) with a similar affinity (Kd = 30 +/- 10 nM for alpha 39, Kd = 32 +/- 14 nM for alpha 41). Both proteins associate with a beta X gamma subunit made up of a 36-kDa beta component and a 6-kDa gamma component. We have previously shown that the beta X gamma unit is required for pertussis toxin-catalyzed ADP-ribosylation (Neer et al. (1984)). By measuring the amount of beta X gamma required for maximal incorporation of ADP-ribose, we now find that the EC50 for beta X gamma in this reaction is 3 +/- 1 times lower for alpha 41 than for alpha 39. ADP-ribosylation by pertussis toxin does not prevent dissociation of alpha 41 X beta X gamma or alpha 39 X beta X gamma by GTP gamma S. GTP gamma S decreases the sedimentation coefficient of ADP-ribosylated alpha 41 from 4.2 S to 3.0 S and the sedimentation coefficient of ADP-ribosylated alpha 39 from 4.3 S to 2.9 S. The conclusion that GTP gamma S dissociates both ADP-ribosylated heterotrimers was confirmed by the observation that GTP gamma S blocks precipitation of ADP-ribosylated alpha 39 or alpha 41 by anti-beta antibody. Neither alpha 41 X beta X gamma nor alpha 39 X beta X gamma is dissociated by GTP whether or not the proteins are ADP-ribosylated. The observation that alpha 41 more readily associates with beta X gamma than does alpha 39 may explain our earlier observation that alpha 41 is more readily ADP-ribosylated than alpha 39. In most intact membranes, only a 41-kDa ADP-ribosylated protein is seen. However, alpha 39 is also present in most tissues since we can detect it with anti-alpha 39 antibody. The functional consequences of pertussis toxin treatment may depend on whether one or both proteins are ADP-ribosylated. This in turn may depend on the ratio of alpha 41 and alpha 39 to beta X gamma in a given tissue.  相似文献   

13.
The ADP-ribosyl moiety of NAD was transferred to a 40-kDa protein when rat liver nuclei were incubated with pertussis toxin. The 40-kDa substrate in the nuclei displayed unique properties as follows, some of which were apparently distinct from those observed with the toxin-substrate GTP-binding protein (Gi) in the liver plasma membranes. 1) The nuclear 40-kDa protein was recognized with antibodies reacting with the alpha-subunits (alpha i-1 and alpha i-2) of Gi, but not with anti-Go-alpha-subunit antibody. 2) The nuclear protein had a higher mobility than alpha-subunit of the plasma membrane-bound Gi upon electrophoresis with a urea/sodium dodecyl sulfate-containing polyacrylamide gel. 3) The nuclear protein was not extracted from the nuclei with 1% Triton X-100, whereas Gi was easily solubilized from the plasma membranes. 4) There was a beta gamma-subunit-like activity in the nuclei, which was assayed by an ability to support pertussis toxin-catalyzed ADP-ribosylation of a purified alpha-subunit of Gi. Moreover, a 36-kDa protein in the nuclei was recognized with antibody raised against purified beta-subunits of Gi. 5) Pertussis toxin-induced ADP-ribosylation of the nuclear protein was selectively inhibited by the addition of a nonhydrolyzable GTP analogue, and its inhibitory action was competitively blocked by the simultaneous addition of GDP or its analogues, as had been observed with plasma membrane-bound Gi. It thus appeared that a novel form of alpha beta gamma-trimeric GTP-binding protein serving as the substrate of pertussis toxin was present in rat liver nuclei. In order to examine a possible role of the nuclear GTP-binding protein, rats were injected with carbon tetrachloride, a necrosis inducer of hepatocytes. There was a marked increase in the nuclear substrate activity from 3-6 days after the injection, without a significant change in the activity of Gi in the plasma membranes. The time course of the increase corresponded with a recovering stage from the hepatocyte necrosis. These results suggested that the nuclear GTP-binding protein found in the present study might be involved at some stages in the hepatocyte growth.  相似文献   

14.
A cDNA encoding a previously unknown G protein alpha-subunit lacking the site for pertussis toxin-catalyzed ADP-ribosylation was recently cloned and its putative protein product named Gz (Fong, H. K. W., Yoshimoto, K. K., Eversole-Cire, P., and Simon, M. I. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 3066-3070) or Gx (Matsuoka, M., Itoh, H. Kozasa, T., and Kaziro, Y. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5384-5388). A synthetic peptide corresponding to the deduced carboxyl-terminal decapeptide of this putative protein (alpha z) has been synthesized and used to prepare a polyclonal rabbit antiserum directed against the protein. The specificity and cross-reactivity of this antiserum was assessed using bacterially expressed recombinant G protein alpha-subunit fusion proteins (r alpha). The crude antiserum strongly recognizes r alpha z in immunoblots. Pretreatment of antiserum with antigen peptide greatly reduces the interaction of the antiserum with r alpha z. Affinity purified antiserum strongly recognizes expressed r alpha z, does not recognize r alpha s1, r alpha s1, r alpha o, or r alpha i3, and very weakly interacts with r alpha i1 and r alpha i2. In contrast, the alpha-subunits of purified bovine brain Gi1 and human erythrocyte Gi2 and Gi3 did not react with the alpha z-antiserum. Partially purified mixtures of human erythrocyte G proteins contain a 41-kDa protein that reacts specifically in immunoblots with both crude and affinity purified alpha z-specific antiserum. Quantitative immunoblotting using r alpha z as a standard indicates that there is 60-100 ng of alpha z/micrograms of 40/41-kDa alpha-subunit protein in partially purified human erythrocyte G protein preparations. We conclude that we have identified the alpha z gene product as a 41-kDa trace protein in human erythrocytes.  相似文献   

15.
Pertussis toxin catalyzes incorporation of 20.2 pmol of ADP-ribose/mg of protein into approximately 40-kDa protein(s) in human neutrophil membranes compared with 14.1 pmol/mg in bovine brain membranes. Based on these measurements we estimate that pertussis toxin substrate(s) should represent at least 0.085% of total membrane protein in neutrophils. Both brain and neutrophil membranes show high concentrations (0.34 versus 0.16% of total membrane protein, respectively) of the common beta subunit of guanine nucleotide binding proteins. Affinity purified antibodies specific for Go-alpha fail to detect any protein in immunoblots of neutrophil membranes (150 micrograms) under conditions where as little as 10 ng of purified Go-alpha is detectable, and Go-alpha is readily detected in brain membranes (100 micrograms). An antiserum against transducin that cross-reacts strongly with Gi-alpha, detects as little as 5 ng of purified Gi-alpha and readily detects Gi-alpha in brain membranes, but in neutrophil membranes, the antiserum detects an approximately 40-kDa band that corresponds to less than 10% of the expected amount of pertussis toxin substrate(s). The results show that human neutrophil membranes contain relatively large amounts of pertussis toxin substrate(s), but that the predominant pertussis toxin substrate is immunochemically distinct from previously identified substrates, transducin, Gi, and Go.  相似文献   

16.
An NAD:cysteine ADP-ribosyltransferase designated ADP-ribosyltransferase C was purified approximately 35,000-fold from human erythrocytes with an 11% yield. The purified ADP-ribosyltransferase C exhibited one predominant protein band on sodium dodecyl sulfate-polyacrylamide gels with an estimated molecular weight (Mr) of 28,500. The Km values for NAD and cysteine methyl ester were determined to be 65 and 4,400 microM, respectively. By using human erythrocyte inside-out membrane vesicles, the transferase C was found to ADP-ribosylate the alpha subunit (Mr = 41,000) of Gi, which is a substrate for pertussis toxin. The ADP-ribosylation of Gi alpha catalyzed by ADP-ribosyltransferase C was inhibited by pre-ADP-ribosylation with pertussis toxin. The linkage of ADP-ribose-Gi alpha in the membranes formed by ADP-ribosyltransferase C was as stable to hydroxylamine as that formed by pertussis toxin. These data represent the first demonstration that eukaryotic cells contain an ADP-ribosyltransferase which can catalyze the ADP-ribosylation of a cysteine residue in Gi alpha.  相似文献   

17.
GTP-binding proteins were purified from human neutrophils, including a 40,000-Da pertussis toxin substrate (Gn) and 22,000-, 24,000-, and 26,000-Da proteins, termed G22K, G24K, and G26K, respectively. The latter proteins were shown to be immunologically unrelated to Gn. G22K cross-reacted with anti-ras monoclonal antibody 142-24EO5, but not with monoclonal antibody Y13-259. A single 22,000-Da substrate for botulinum toxin-catalyzed ADP-ribosylation present in neutrophil membranes co-migrated upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis with G22K. In the presence of a cytosolic factor, G22K could serve as a specific botulinum toxin substrate. The 22,000-Da botulinum toxin substrate in neutrophil membranes could be immunoprecipitated by antibody 142-24EO5, but not by antibody Y13-259. G22K appears to be a unique GTP-binding protein which serves as a substrate for ADP-ribosylation by a component of botulinum toxin and which may be involved in exocytotic secretion or cellular differentiation.  相似文献   

18.
ADP-ribosylation of the bovine brain rho protein by botulinum toxin type C1   总被引:10,自引:0,他引:10  
We have separated at least six GTP-binding proteins (G proteins) with Mr values between 20,000 and 25,000 from bovine brain crude membranes (Kikuchi, A., Yamashita, T., Kawata, M., Yamamoto, K., Ideda, K., Tanimoto, T., and Takai, Y. (1988) J. Biol. Chem. 263, 2897-2904). Three of these G proteins were copurified with the proteins ADP-ribosylated by botulinum toxin type C1. One G protein ADP-ribosylated by this toxin was identified to be the bovine brain rho protein (rho p20) which was purified to near homogeneity (Yamamoto, K., Kondo, J., Hishida, T., Teranishi, Y., and Takai, Y. (1988) J. Biol. Chem. 263, 9926-9932). rho p20 was ADP-ribosylated by botulinum toxin type C1 in time- and dose-dependent manners. About 0.4 mol of ADP-ribose was maximally incorporated into 1 mol of rho p20. The ADP-ribosylation of rho p20 was dependent on the presence of Mg2+. GTP enhanced the ADP-ribosylation in the presence of a low concentration (50 nM) of Mg2+ but not in the presence of a high concentration (0.5 mM) of Mg2+. The high concentration of Mg2+ fully stimulated the ADP-ribosylation even in the absence of GTP. The ADP-ribosylation of rho p20 did not affect its GTP gamma S-binding and GTPase activities. These results indicate that there are at least three G proteins ADP-ribosylated by botulinum toxin type C1 in bovine brain crude membranes and that one of them is rho p20. Two other G proteins have not yet been identified, but neither the c-ras protein, ADP-ribosylation factor for Gs, nor a G protein with a Mr of 24,000 was ADP-ribosylated by this toxin.  相似文献   

19.
A 23 kDa GTP-binding protein was purified from pig heart sarcolemma. This protein was not ADP-ribosylated by cholera, pertussis and botulinum C3 toxins. In pig heart sarcolemma pertussis toxin ADP-ribosylated 40 kDa subunit of Gi-protein, cholera toxin--45 kDa subunit of Gs-protein, botulinum C3 toxin ADP-ribosylated a group of proteins with Mr 22, 26 and 29 kDa. Antiserum generated against the peptide common for all alpha-subunits of G-proteins did not react with purified 23 kDa protein. Trypsin cleaved the 23 kDa protein in the presence of guanyl nucleotides into a 22 kDa fragment. Proteolysis of the 39 kDa alpha 0-subunit from bovine brain plasma membranes and ADP-ribosylated 40 kDa alpha i-subunit from pig heart sarcolemma in the presence of GTP gamma S yielded the 37 and 38 kDa fragments, respectively. In the presence of GTP and GDP the proteolysis of alpha 0 yielded the 24 and 15 kDa fragments, while the proteolysis of ADP-ribosylated alpha i-subunit yielded a labelled 16 kDa peptide. Irrespective of nucleotides trypsin cleaved the ADP-ribosylated 26 kDa substrate of botulinum C3 toxin into two labelled peptides with Mr 24 and 17 kDa. The data obtained indicate the existence in pig heart sarcolemma of a new 23 kDa GTP-binding protein with partial homology to the alpha-subunits of "classical" G-proteins.  相似文献   

20.
Interaction of GTP-binding proteins with calmodulin   总被引:3,自引:0,他引:3  
Two GTP-binding proteins (Gi and Go), which were the substrates for islet-activating protein, pertussis toxin, were purified from bovine cerebral cortical membranes. Both Gi and Go completely inhibited calmodulin-stimulated cyclic nucleotide phosphodiesterase activity. The same concentrations of these proteins, however, had no appreciable effect on the basal phosphodiesterase activity. The isolated Gi alpha and beta gamma subunits of GTP-binding proteins were potent inhibitors of the calmodulin-stimulated phosphodiesterase activity, but Go alpha was very weak. Therefore, the beta gamma subunits were likely to be the major active molecules in the brain membranes. GTP-binding proteins were shown to bind directly to calmodulin in a Ca2+-dependent manner by a gel permeation binding experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号